Generalized Autoregressive Score Models in R: The GAS Package

被引:40
|
作者
Ardia, David [1 ,2 ]
Boudt, Kris [3 ,4 ,5 ]
Catania, Leopoldo [6 ,7 ]
机构
[1] Univ Neuchatel, Inst Financial Anal, Neuchatel, Switzerland
[2] HEC Montreal, Dept Decis Sci, Montreal, PQ, Canada
[3] Univ Ghent, Dept Econ, Ghent, Belgium
[4] Vrije Univ Brussel, Brussels, Belgium
[5] Vrije Univ Amsterdam, Amsterdam, Netherlands
[6] Aarhus BSS, Dept Econ & Business Econ, Aarhus, Denmark
[7] CREATES, Aarhus, Denmark
来源
JOURNAL OF STATISTICAL SOFTWARE | 2019年 / 88卷 / 06期
关键词
GAS; time series models; score models; dynamic conditional score; R software; FAT TAILS; DYNAMICS;
D O I
10.18637/jss.v088.i06
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents the R package GAS for the analysis of time series under the generalized autoregressive score (GAS) framework of Creal, Koopman, and Lucas (2013) and Harvey (2013). The distinctive feature of the GAS approach is the use of the score function as the driver of time-variation in the parameters of non-linear models. The GAS package provides functions to simulate univariate and multivariate GAS processes, to estimate the GAS parameters and to make time series forecasts. We illustrate the use of the GAS package with a detailed case study on estimating the time-varying conditional densities of financial asset returns.
引用
收藏
页码:1 / 28
页数:28
相关论文
共 50 条
  • [31] Forecasting developed and BRICS stock markets with cryptocurrencies and gold: generalized orthogonal generalized autoregressive conditional heteroskedasticity and generalized autoregressive score analysis
    Jeribi, Ahmed
    Ghorbel, Achraf
    INTERNATIONAL JOURNAL OF EMERGING MARKETS, 2022, 17 (09) : 2290 - 2320
  • [32] SPATIAL AUTOREGRESSIVE MODELS WITH GENERALIZED SPATIAL DISTURBANCES
    Fang, Kuangnan
    Lan, Wei
    Pu, Dan
    Zhang, Qingzhao
    STATISTICA SINICA, 2024, 34 (02) : 725 - 745
  • [33] Bimodal Birnbaum-Saunders generalized autoregressive score model
    Fonseca, Rodney V.
    Cribari-Neto, Francisco
    JOURNAL OF APPLIED STATISTICS, 2018, 45 (14) : 2585 - 2606
  • [34] The Rayleigh Generalized Autoregressive Score Model for SAR Data Interpretation
    Pena-Ramirez, Miguel
    Guerra, Renata Rojas
    Bayer, Fabio M.
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
  • [35] SEAsic: R Package for Score Equity Assessment
    Huggins-Manley, Anne Corinne
    Whitaker, Douglas
    APPLIED PSYCHOLOGICAL MEASUREMENT, 2015, 39 (06) : 496 - 498
  • [36] Technical note: An R package for fitting generalized linear mixed models in animal breeding
    Vazquez, A. I.
    Bates, D. M.
    Rosa, G. J. M.
    Gianola, D.
    Weigel, K. A.
    JOURNAL OF ANIMAL SCIENCE, 2010, 88 (02) : 497 - 504
  • [37] eNetXplorer: an R package for the quantitative exploration of elastic net families for generalized linear models
    Candia, Julian
    Tsang, John S.
    BMC BIOINFORMATICS, 2019, 20 (1)
  • [38] eNetXplorer: an R package for the quantitative exploration of elastic net families for generalized linear models
    Julián Candia
    John S Tsang
    BMC Bioinformatics, 20
  • [39] tscount: An R Package for Analysis of Count Time Series Following Generalized Linear Models
    Liboschik, Tobias
    Fokianos, Konstantinos
    Fried, Roland
    JOURNAL OF STATISTICAL SOFTWARE, 2017, 82 (05):
  • [40] Score test for parameter change in Poisson autoregressive models
    Kang, Jiwon
    Song, Junmo
    ECONOMICS LETTERS, 2017, 160 : 33 - 37