Generalized Autoregressive Score Models in R: The GAS Package

被引:40
|
作者
Ardia, David [1 ,2 ]
Boudt, Kris [3 ,4 ,5 ]
Catania, Leopoldo [6 ,7 ]
机构
[1] Univ Neuchatel, Inst Financial Anal, Neuchatel, Switzerland
[2] HEC Montreal, Dept Decis Sci, Montreal, PQ, Canada
[3] Univ Ghent, Dept Econ, Ghent, Belgium
[4] Vrije Univ Brussel, Brussels, Belgium
[5] Vrije Univ Amsterdam, Amsterdam, Netherlands
[6] Aarhus BSS, Dept Econ & Business Econ, Aarhus, Denmark
[7] CREATES, Aarhus, Denmark
来源
JOURNAL OF STATISTICAL SOFTWARE | 2019年 / 88卷 / 06期
关键词
GAS; time series models; score models; dynamic conditional score; R software; FAT TAILS; DYNAMICS;
D O I
10.18637/jss.v088.i06
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents the R package GAS for the analysis of time series under the generalized autoregressive score (GAS) framework of Creal, Koopman, and Lucas (2013) and Harvey (2013). The distinctive feature of the GAS approach is the use of the score function as the driver of time-variation in the parameters of non-linear models. The GAS package provides functions to simulate univariate and multivariate GAS processes, to estimate the GAS parameters and to make time series forecasts. We illustrate the use of the GAS package with a detailed case study on estimating the time-varying conditional densities of financial asset returns.
引用
收藏
页码:1 / 28
页数:28
相关论文
共 50 条
  • [1] GENERALIZED AUTOREGRESSIVE SCORE MODELS WITH APPLICATIONS
    Creal, Drew
    Koopman, Siem Jan
    Lucas, Andre
    JOURNAL OF APPLIED ECONOMETRICS, 2013, 28 (05) : 777 - 795
  • [2] mdscore : An R Package to Compute Improved Score Tests in Generalized Linear Models
    da Silva-Junior, Antonio Hermes M.
    da Silva, Damiao Nobrega
    Ferrari, Silvia L. P.
    JOURNAL OF STATISTICAL SOFTWARE, 2014, 61 (CS2): : 1 - 16
  • [3] Pspatreg: R Package for Semiparametric Spatial Autoregressive Models
    Minguez, Roman
    Basile, Roberto
    Durban, Maria
    MATHEMATICS, 2024, 12 (22)
  • [4] A class of generalized autoregressive score panel stochastic frontier models
    Tran, Kien C.
    Michaelides, Panayotis G.
    JOURNAL OF PRODUCTIVITY ANALYSIS, 2025,
  • [5] Switching generalized autoregressive score copula models with application to systemic risk
    Bernardi, Mauro
    Catania, Leopoldo
    JOURNAL OF APPLIED ECONOMETRICS, 2019, 34 (01) : 43 - 65
  • [6] Hierarchical Generalized Linear Models: The R Package HGLMMM
    Molas, Marek
    Lesaffre, Emmanuel
    JOURNAL OF STATISTICAL SOFTWARE, 2011, 39 (13): : 1 - 20
  • [7] PerMallows: An R Package for Mallows and Generalized Mallows Models
    Irurozki, Ekhine
    Calvo, Borja
    Lozano, Jose A.
    JOURNAL OF STATISTICAL SOFTWARE, 2016, 71 (12): : 1 - 30
  • [8] Generalized quasi maximum likelihood estimation for generalized autoregressive score models: simulations and real applications
    Gammoudi, Imed
    Nani, Asma
    El Ghourabi, Mohamed
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2021, 50 (11) : 3338 - 3363
  • [9] cts: An R Package for Continuous Time Autoregressive Models via Kalman Filter
    Wang, Zhu
    JOURNAL OF STATISTICAL SOFTWARE, 2013, 53 (05): : 1 - 19
  • [10] Generalized Network Autoregressive Processes and the GNAR Package
    Knight, Marina
    Leeming, Kathryn
    Nason, Guy
    Nunes, Matthew
    JOURNAL OF STATISTICAL SOFTWARE, 2020, 96 (05): : 1 - 36