On the smallest edge defining sets of graphs

被引:0
|
作者
Akbari, S
Khosrovshahi, GB
机构
[1] Sharif Univ Technol, Dept Math Sci, Tehran, Iran
[2] Univ Tehran, Dept Math, Tehran, Iran
[3] Inst Studies Theoret Phys & Math, Tehran, Iran
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a given sequence of nonincreasing numbers, d = (d(1),..., d(n)), a necessary and sufficient condition is presented to characterize d when its realization is a unique labelled simple graph. If G is a graph, we consider the subgraph G' of G with maximum edges which is uniquely determined with respect to its degree sequence. We call the set of E(G)\E(G') the smallest edge defining set of G. This definition coincides with the similar one in design theory.
引用
收藏
页码:293 / 303
页数:11
相关论文
共 50 条
  • [41] Matchings including or excluding certain edge sets in bipartite graphs
    Buchanan, HL
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1997, 29 : 303 - 306
  • [42] Graphs with unique minimum edge-vertex dominating sets
    Senthilkumar, B.
    Chellali, M.
    Kumar, H. Naresh
    Venkatakrishnan, Y. B.
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2025, 10 (01) : 99 - 109
  • [43] Graphs with unique minimum vertex-edge dominating sets
    Senthilkumar, B.
    Chellali, M.
    Naresh Kumar, H.
    Venkatakrishnan, Yanamandram B.
    RAIRO-OPERATIONS RESEARCH, 2023, 57 (04) : 1785 - 1795
  • [44] Complexity of Maker-Breaker games on edge sets of graphs☆
    Duchene, Eric
    Gledel, Valentin
    Mc Inerney, Fionn
    Nisse, Nicolas
    Oijid, Nacim
    Parreau, Aline
    Stojakovic, Milos
    DISCRETE APPLIED MATHEMATICS, 2025, 361 : 502 - 522
  • [45] Super-simple 2-(upsilon, 5, 1) directed designs and their smallest defining sets
    Amirzade, Farzane
    Soltankhah, Nasrin
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2012, 54 : 85 - 106
  • [46] Biprimitive Graphs of Smallest Order
    Shao-Fei Du
    Dragan Marušič
    Journal of Algebraic Combinatorics, 1999, 9 : 151 - 156
  • [47] Haar-smallest sets
    Kwela, Adam
    TOPOLOGY AND ITS APPLICATIONS, 2019, 267
  • [48] Biprimitive graphs of smallest order
    Du, SF
    Marusic, D
    JOURNAL OF ALGEBRAIC COMBINATORICS, 1999, 9 (02) : 151 - 156
  • [49] Smallest maximal matchings of graphs
    Tavakoli, Mostafa
    Doslic, Tomislav
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2023, 52 (02): : 356 - 366
  • [50] On smallest maximally nonhamiltonian graphs
    Lin, XH
    Jiang, WZ
    Zhang, CX
    Yang, YS
    ARS COMBINATORIA, 1997, 45 : 263 - 270