On the smallest edge defining sets of graphs

被引:0
|
作者
Akbari, S
Khosrovshahi, GB
机构
[1] Sharif Univ Technol, Dept Math Sci, Tehran, Iran
[2] Univ Tehran, Dept Math, Tehran, Iran
[3] Inst Studies Theoret Phys & Math, Tehran, Iran
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a given sequence of nonincreasing numbers, d = (d(1),..., d(n)), a necessary and sufficient condition is presented to characterize d when its realization is a unique labelled simple graph. If G is a graph, we consider the subgraph G' of G with maximum edges which is uniquely determined with respect to its degree sequence. We call the set of E(G)\E(G') the smallest edge defining set of G. This definition coincides with the similar one in design theory.
引用
收藏
页码:293 / 303
页数:11
相关论文
共 50 条
  • [31] ON THE EDGE-BALANCED INDEX SETS OF PRODUCT GRAPHS
    Krop, Elliot
    Lee, Sin-Min
    Raridan, Christopher
    JOURNAL OF THE INDONESIAN MATHEMATICAL SOCIETY, 2011, : 71 - 78
  • [32] MATROIDS ON EDGE SETS OF GRAPHS WITH CONNECTED SUBGRAPHS AS CIRCUITS
    SIMOESPEREIRA, JM
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 38 (03) : 503 - 506
  • [33] EXTREMAL POINT AND EDGE SETS IN N-GRAPHS
    SAUER, N
    CANADIAN JOURNAL OF MATHEMATICS, 1969, 21 (05): : 1069 - &
  • [34] Monitoring Edge-Geodetic Sets in Graphs: Extremal Graphs, Bounds, Complexity
    Foucaud, Florent
    Marcille, Pierre-Marie
    Myint, Zin Mar
    Sandeep, R. B.
    Sen, Sagnik
    Taruni, S.
    ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, CALDAM 2024, 2024, 14508 : 29 - 43
  • [35] Smallest defining sets of super-simple 2-(υ, 4, 1) directed designs
    Amirzade, Farzane
    Soltankhah, Nasrin
    UTILITAS MATHEMATICA, 2015, 96 : 331 - 344
  • [36] Smallest defining number of r-regular k-chromatic graphs:: r ≠ k
    Mahmoodian, ES
    Omoomi, B
    Soltankhah, N
    ARS COMBINATORIA, 2006, 78 : 211 - 223
  • [37] A characterization of uniquely vertex colorable graphs using minimal defining sets
    Hajiabolhassan, H
    Mehrabadi, ML
    Tusserkani, R
    Zaker, M
    DISCRETE MATHEMATICS, 1999, 199 (1-3) : 233 - 236
  • [38] Distance-Edge-Monitoring Sets in Hierarchical and Corona Graphs
    Yang, Gang
    He, Changxiang
    JOURNAL OF INTERCONNECTION NETWORKS, 2023, 23 (02)
  • [39] EDGE-TO-VERTEX GEODETIC SETS IN THE JOIN AND CORONA OF GRAPHS
    Cabilin, Elias B.
    Canoy, Sergio R., Jr.
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2019, 18 (03): : 263 - 278
  • [40] Incidence-free sets and edge domination in incidence graphs
    Spiro, Sam
    Adriaensen, Sam
    Mattheus, Sam
    JOURNAL OF COMBINATORIAL DESIGNS, 2024, 32 (02) : 55 - 87