Orthogonality preserving pairs of operators on Hilbert C0(Z)-modules

被引:2
|
作者
Asadi, Mohammad B. [1 ,2 ]
Olyaninezhad, Fatemeh [3 ]
机构
[1] Univ Tehran, Coll Sci, Sch Math Stat & Comp Sci, Tehran, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, POB 19395-5746, Tehran, Iran
[3] Univ Guilan, Dept Math, Rasht, Iran
来源
LINEAR & MULTILINEAR ALGEBRA | 2022年 / 70卷 / 16期
关键词
Orthogonality preserving map; Hilbert C*-module; continuous field of Hilbert spaces;
D O I
10.1080/03081087.2020.1825610
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose that Z is a locally compact Hausdorff space and Psi, Phi : E -> F are C-0(Z)-module maps between Hilbert C-0(Z)-modules such that for every x, y is an element of E, x perpendicular to y implies Psi(x) perpendicular to Phi(y). Then there exists a bounded complex-valued function phi on Z that is continuous on Z(E) = {z is an element of Z : < x, x > (z) not equal 0 forsome x is an element of E} and satisfies <Psi(x), Phi(y)> = phi . < x, y > on Z, for all x, y is an element of E.
引用
收藏
页码:3151 / 3158
页数:8
相关论文
共 50 条
  • [41] A note on Fredholm operators on (c0)T
    Djolovic, Ivana
    Malkowsky, Eberhard
    APPLIED MATHEMATICS LETTERS, 2009, 22 (11) : 1734 - 1739
  • [42] Similarity Results for Operators of Class C0
    Raphaël Clouâtre
    Integral Equations and Operator Theory, 2011, 71 : 557 - 573
  • [43] CAUSAL C0 OPERATORS AND FEEDBACK STABILITY
    FEINTUCH, A
    MATHEMATICAL SYSTEMS THEORY, 1978, 11 (03): : 283 - 288
  • [44] Unbounded operators on Hilbert C*-modules and C*-algebras
    Schmudgen, Konrad
    DIVERSITY AND BEAUTY OF APPLIED OPERATOR THEORY, 2018, 268 : 429 - 441
  • [45] Fusion Frames for Operators in Hilbert C*-Modules
    Khayyami, M.
    Nazari, A.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2020, 51 (03): : 791 - 803
  • [46] Derivations on the algebra of operators in hilbert C*-modules
    Peng Tong Li
    De Guang Han
    Wai Shing Tang
    Acta Mathematica Sinica, English Series, 2012, 28 : 1615 - 1622
  • [47] QUOTIENTS OF ADJOINTABLE OPERATORS ON HILBERT C*-MODULES
    Forough, Marzieh
    JOURNAL OF OPERATOR THEORY, 2015, 73 (02) : 425 - 432
  • [48] Geometry and topology of operators on Hilbert C*-modules
    Troitsky E.V.
    Journal of Mathematical Sciences, 2000, 98 (2) : 245 - 290
  • [49] Derivations on the algebra of operators in hilbert C*-modules
    Li, Peng Tong
    Han, De Guang
    Tang, Wai Shing
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2012, 28 (08) : 1615 - 1622
  • [50] Derivations on the Algebra of Operators in Hilbert C;-Modules
    Peng Tong LI
    De Guang HAN
    Wai Shing TANG
    Acta Mathematica Sinica,English Series, 2012, (08) : 1615 - 1622