Orthogonality preserving pairs of operators on Hilbert C0(Z)-modules

被引:2
|
作者
Asadi, Mohammad B. [1 ,2 ]
Olyaninezhad, Fatemeh [3 ]
机构
[1] Univ Tehran, Coll Sci, Sch Math Stat & Comp Sci, Tehran, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, POB 19395-5746, Tehran, Iran
[3] Univ Guilan, Dept Math, Rasht, Iran
来源
LINEAR & MULTILINEAR ALGEBRA | 2022年 / 70卷 / 16期
关键词
Orthogonality preserving map; Hilbert C*-module; continuous field of Hilbert spaces;
D O I
10.1080/03081087.2020.1825610
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose that Z is a locally compact Hausdorff space and Psi, Phi : E -> F are C-0(Z)-module maps between Hilbert C-0(Z)-modules such that for every x, y is an element of E, x perpendicular to y implies Psi(x) perpendicular to Phi(y). Then there exists a bounded complex-valued function phi on Z that is continuous on Z(E) = {z is an element of Z : < x, x > (z) not equal 0 forsome x is an element of E} and satisfies <Psi(x), Phi(y)> = phi . < x, y > on Z, for all x, y is an element of E.
引用
收藏
页码:3151 / 3158
页数:8
相关论文
共 50 条
  • [21] SUBADDITIVE OPERATORS ON C0(T)
    DOBRAKOV, I
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1972, 20 (07): : 561 - &
  • [22] STUDY OF C0 CLASS OPERATORS
    SZNAGY, B
    FOIAS, C
    ACTA SCIENTIARUM MATHEMATICARUM, 1970, 31 (3-4): : 287 - &
  • [23] Hilbert C*-Modules with Hilbert Dual and C*-Fredholm Operators
    Manuilov, Vladimir
    Troitsky, Evgenij
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2023, 95 (03)
  • [24] On the spectrum of the Rhaly operators on c0 and c
    Yildirim, M
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1998, 29 (12): : 1301 - 1309
  • [25] The reducibility of C0(2) operators
    Zhu, Senhua
    Yang, Yixin
    Li, Ran
    Lu, Yufeng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 482 (02)
  • [26] Regular operators on Hilbert C*-modules
    Pal, A
    JOURNAL OF OPERATOR THEORY, 1999, 42 (02) : 331 - 350
  • [27] Hypercyclic operators on Hilbert C*-modules
    Ivkovic, Stefan
    FILOMAT, 2024, 38 (06) : 1901 - 1913
  • [28] Unbounded operators on Hilbert C*-modules
    Gebhardt, Rene
    Schmuedgen, Konrad
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2015, 26 (11)
  • [29] FRAMES AND OPERATORS IN HILBERT C*-MODULES
    Najati, Abbas
    Saem, M. Mohammadi
    Gavruta, P.
    OPERATORS AND MATRICES, 2016, 10 (01): : 73 - 81
  • [30] OPERATORS ON C0(L, X) WHOSE RANGE DOES NOT CONTAIN c0
    Talponen, Jarno
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2008, 77 (03) : 515 - 520