Translation of Atherosclerotic Plaque Phase-Contrast CT Imaging from Synchrotron Radiation to a Conventional Lab-Based X-Ray Source

被引:26
|
作者
Saam, Tobias [1 ]
Herzen, Julia [2 ,7 ]
Hetterich, Holger [1 ]
Fill, Sandra [1 ]
Willner, Marian [2 ]
Stockmar, Marco [2 ]
Achterhold, Klaus [2 ]
Zanette, Irene [3 ]
Weitkamp, Timm [4 ]
Schueller, Ulrich [5 ]
Auweter, Sigrid [1 ]
Adam-Neumair, Silvia [6 ]
Nikolaou, Konstantin [1 ]
Reiser, Maximilian F. [1 ]
Pfeiffer, Franz [2 ]
Bamberg, Fabian [1 ]
机构
[1] Ludwig Maximilians Univ Hosp, Inst Clin Radiol, Munich, Germany
[2] Tech Univ Munich, Chair Biomed Phys, D-80290 Munich, Germany
[3] European Synchrotron Radiat Facil, F-38043 Grenoble, France
[4] Synchrotron Soleil, Gif Sur Yvette, France
[5] Ludwig Maximilians Univ Hosp, Ctr Neuropathol, Munich, Germany
[6] Univ Munich, Inst Anat, Munich, Germany
[7] Helmholtz Zentrum Geesthacht, Inst Mat Res, Geesthacht, Germany
来源
PLOS ONE | 2013年 / 8卷 / 09期
基金
欧洲研究理事会;
关键词
TOMOGRAPHY; RISK; IVUS;
D O I
10.1371/journal.pone.0073513
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Objectives: Phase-contrast imaging is a novel X-ray based technique that provides enhanced soft tissue contrast. The aim of this study was to evaluate the feasibility of visualizing human carotid arteries by grating-based phase-contrast tomography (PC-CT) at two different experimental set-ups: (i) applying synchrotron radiation and (ii) using a conventional X-ray tube. Materials and Methods: Five ex-vivo carotid artery specimens were examined with PC-CT either at the European Synchrotron Radiation Facility using a monochromatic X-ray beam (2 specimens; 23 keV; pixel size 5.4 mu m), or at a laboratory set-up on a conventional X-ray tube (3 specimens; 35-40 kVp; 70 mA; pixel size 100 mu m). Tomographic images were reconstructed and compared to histopathology. Two independent readers determined vessel dimensions and one reader determined signal-to-noise ratios (SNR) between PC-CT and absorption images. Results: In total, 51 sections were included in the analysis. Images from both set-ups provided sufficient contrast to differentiate individual vessel layers. All PCI-based measurements strongly predicted but significantly overestimated lumen, intima and vessel wall area for both the synchrotron and the laboratory-based measurements as compared with histology (all p<0.001 with slope >0.53 per mm(2), 95%-CI: 0.35 to 0.70). Although synchrotron-based images were characterized by higher SNRs than laboratory-based images; both PC-CT set-ups had superior SNRs compared to corresponding conventional absorption-based images (p<0.001). Inter-reader reproducibility was excellent (ICCs >0.98 and >0.84 for synchrotron and for laboratory-based measurements; respectively). Conclusion: Experimental PC-CT of carotid specimens is feasible with both synchrotron and conventional X-ray sources, producing high-resolution images suitable for vessel characterization and atherosclerosis research.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Phase-Contrast Imaging in a Polychromatic X-ray Beam at a Laboratory Source
    Yu. S. Krivonosov
    V. E. Asadchikov
    A. V. Buzmakov
    Crystallography Reports, 2020, 65 : 503 - 507
  • [32] Compressed X-ray phase-contrast imaging using a coded source
    Sung, Yongjin
    Xu, Ling
    Nagarkar, Vivek
    Gupta, Rajiv
    OPTICS COMMUNICATIONS, 2014, 332 : 370 - 378
  • [33] X-ray phase-contrast imaging with an Inverse Compton Scattering source
    Endrizzi, M.
    Carpinelli, M.
    Delogu, P.
    Oliva, P.
    Golosio, B.
    Gureyev, T. E.
    Bottigli, U.
    Stefanini, A.
    6TH INTERNATIONAL CONFERENCE ON MEDICAL APPLICATIONS OF SYNCHROTRON RADIATION, 2010, 1266 : 39 - +
  • [34] Simulation of X-ray phase-contrast imaging with partially coherence source
    Institute of Optoelectronics Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
    不详
    Shenzhen Daxue Xuebao (Ligong Ban), 2007, 3 (261-266):
  • [35] Phase-Contrast Imaging in a Polychromatic X-ray Beam at a Laboratory Source
    Krivonosov, Yu. S.
    Asadchikov, V. E.
    Buzmakov, A. V.
    CRYSTALLOGRAPHY REPORTS, 2020, 65 (04) : 503 - 507
  • [36] HARD X-RAY PHASE-CONTRAST IMAGING WITH A MICROFOCUS SOURCE.
    Stevenson, A. W.
    Gao, D.
    Gureyev, T. E.
    Pogany, A.
    Wilkins, S. W.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 1999, 55 : 226 - 226
  • [37] SR biomedical imaging with phase-contrast and fluorescent x-ray CT
    Takeda, T
    Wu, J
    Yoneyama, A
    Tsuchiya, Y
    Lwin, TT
    Hirai, Y
    Kuroe, T
    Yuasa, T
    Hyodo, K
    Dilmanian, FA
    Akatsuka, T
    DEVELOPMENTS IN X-RAY TOMOGRAPHY IV, 2004, 5535 : 380 - 391
  • [38] Phase-contrast X-ray CT Imaging of Esophagus and Esophageal Carcinoma
    Zhang, Jianfa
    Tian, Dongping
    Lin, Runhua
    Zhou, Guangzhao
    Peng, Guanyun
    Su, Min
    SCIENTIFIC REPORTS, 2014, 4
  • [39] Phase-contrast X-ray CT Imaging of Esophagus and Esophageal Carcinoma
    Jianfa Zhang
    Dongping Tian
    Runhua Lin
    Guangzhao zhou
    Guanyun Peng
    Min Su
    Scientific Reports, 4
  • [40] Propagation-based Phase-Contrast X-ray Imaging at a Compact Light Source
    Regine Gradl
    Martin Dierolf
    Lorenz Hehn
    Benedikt Günther
    Ali Önder Yildirim
    Bernhard Gleich
    Klaus Achterhold
    Franz Pfeiffer
    Kaye Susannah Morgan
    Scientific Reports, 7