On simultaneous on-line state and parameter estimation in non-linear state-space models

被引:50
|
作者
Tulsyan, Aditya [1 ]
Huang, Biao [1 ]
Gopaluni, R. Bhushan [2 ,3 ]
Forbes, J. Fraser [1 ]
机构
[1] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 2G6, Canada
[2] Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada
[3] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
基金
加拿大自然科学与工程研究理事会;
关键词
On-line estimation; Bayesian methods; Particle filters; Missing measurements; Stochastic non-linear systems; PARTICLE FILTERS; IDENTIFICATION;
D O I
10.1016/j.jprocont.2013.01.010
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
On-line estimation plays an important role in process control and monitoring. Obtaining a theoretical solution to the simultaneous state-parameter estimation problem for non-linear stochastic systems involves solving complex multi-dimensional integrals that are not amenable to analytical solution. While basic sequential Monte-Carlo (SMC) or particle filtering (PF) algorithms for simultaneous estimation exist, it is well recognized that there is a need for making these on-line algorithms non-degenerate, fast and applicable to processes with missing measurements. To overcome the deficiencies in traditional algorithms, this work proposes a Bayesian approach to on-line state and parameter estimation. Its extension to handle missing data in real-time is also provided. The simultaneous estimation is performed by filtering an extended vector of states and parameters using an adaptive sequential-importance-resampling (SIR) filter with a kernel density estimation method. The approach uses an on-line optimization algorithm based on Kullback-Leibler (KL) divergence to allow adaptation of the SIR filter for combined state-parameter estimation. An optimal tuning rule to control the width of the kernel and the variance of the artificial noise added to the parameters is also proposed. The approach is illustrated through numerical examples. (c) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:516 / 526
页数:11
相关论文
共 50 条
  • [41] STATE-SPACE FOR NON-LINEAR ALGEBRAICALLY CONSTRAINED DYNAMICAL-SYSTEMS
    EITELBERG, E
    INTERNATIONAL JOURNAL OF CONTROL, 1983, 37 (06) : 1433 - 1447
  • [42] Non-linear dynamic state-space network modeling for decoding neurodegeneration
    Chirumamilla, Venkata C.
    Ip, Chi Wang
    Reich, Martin
    Peach, Robert
    Volkmann, Jens
    Nasseroleslami, Bahman
    Muthuraman, Muthuraman
    NEURAL REGENERATION RESEARCH, 2024, 19 (09) : 1879 - 1880
  • [43] Learning Stable and Robust Linear Parameter-Varying State-Space Models
    Verhoek, Chris
    Wang, Ruigang
    Toth, Roland
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 1348 - 1353
  • [44] State estimation for nonlinear state-space transmission models of tuberculosis
    Strydom, Duayne
    le Roux, Johan Derik
    Craig, Ian Keith
    RISK ANALYSIS, 2023, 43 (02) : 339 - 357
  • [45] State Estimation for a Class of Piecewise Affine State-Space Models
    Rui, Rafael
    Ardeshiri, Tohid
    Nurminen, Henri
    Bazanella, Alexandre
    Gustafsson, Fredrik
    IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (01) : 61 - 65
  • [46] On the estimation of state matrix and noise statistics in state-space models
    Enescu, M
    Koivunen, V
    IEEE 56TH VEHICULAR TECHNOLOGY CONFERENCE, VTC FALL 2002, VOLS 1-4, PROCEEDINGS, 2002, : 2192 - 2196
  • [47] Approximate Smoothing and Parameter Estimation in High-Dimensional State-Space Models
    Finke, Axel
    Singh, Sumeetpal S.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (22) : 5982 - 5994
  • [48] ROBUST STABILITY IN LINEAR STATE-SPACE MODELS
    JIANG, CL
    INTERNATIONAL JOURNAL OF CONTROL, 1988, 48 (02) : 813 - 816
  • [49] Sequential Monte Carlo methods for parameter estimation in nonlinear state-space models
    Gao, Meng
    Zhang, Hui
    COMPUTERS & GEOSCIENCES, 2012, 44 : 70 - 77
  • [50] Gaussian Variational State Estimation for Nonlinear State-Space Models
    Courts, Jarrad
    Wills, Adrian
    Schon, Thomas
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 5979 - 5993