On simultaneous on-line state and parameter estimation in non-linear state-space models

被引:50
|
作者
Tulsyan, Aditya [1 ]
Huang, Biao [1 ]
Gopaluni, R. Bhushan [2 ,3 ]
Forbes, J. Fraser [1 ]
机构
[1] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 2G6, Canada
[2] Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada
[3] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
基金
加拿大自然科学与工程研究理事会;
关键词
On-line estimation; Bayesian methods; Particle filters; Missing measurements; Stochastic non-linear systems; PARTICLE FILTERS; IDENTIFICATION;
D O I
10.1016/j.jprocont.2013.01.010
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
On-line estimation plays an important role in process control and monitoring. Obtaining a theoretical solution to the simultaneous state-parameter estimation problem for non-linear stochastic systems involves solving complex multi-dimensional integrals that are not amenable to analytical solution. While basic sequential Monte-Carlo (SMC) or particle filtering (PF) algorithms for simultaneous estimation exist, it is well recognized that there is a need for making these on-line algorithms non-degenerate, fast and applicable to processes with missing measurements. To overcome the deficiencies in traditional algorithms, this work proposes a Bayesian approach to on-line state and parameter estimation. Its extension to handle missing data in real-time is also provided. The simultaneous estimation is performed by filtering an extended vector of states and parameters using an adaptive sequential-importance-resampling (SIR) filter with a kernel density estimation method. The approach uses an on-line optimization algorithm based on Kullback-Leibler (KL) divergence to allow adaptation of the SIR filter for combined state-parameter estimation. An optimal tuning rule to control the width of the kernel and the variance of the artificial noise added to the parameters is also proposed. The approach is illustrated through numerical examples. (c) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:516 / 526
页数:11
相关论文
共 50 条
  • [31] Parameter estimation in general state-space models using particle methods
    Arnaud Doucet
    Vladislav B. Tadić
    Annals of the Institute of Statistical Mathematics, 2003, 55 : 409 - 422
  • [32] Convolution particle filtering for parameter estimation in general state-space models
    Campillo, Fabien
    Rossi, Vivien
    PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, : 2159 - 2164
  • [33] An algorithm for non-parametric estimation in state-space models
    Thi Tuyet Trang Chau
    Ailliot, Pierre
    Monbet, Valerie
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2021, 153
  • [34] A simulation based algorithm for optimal quantization in non-linear/non-Gaussian state-space models
    Tadic, VB
    Doucet, A
    PROCEEDINGS OF THE 2004 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2004, : 5408 - 5413
  • [35] Fault detection and isolation in stochastic non-linear state-space models using particle filters
    Alrowaie, F.
    Gopaluni, R. B.
    Kwok, K. E.
    CONTROL ENGINEERING PRACTICE, 2012, 20 (10) : 1016 - 1032
  • [36] Particle filter as a controlled Markov chain for on-line parameter estimation in general state space models
    Poyiadjis, George
    Singh, Sumeetpal S.
    Doucet, Arnaud
    2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1-13, 2006, : 2780 - 2783
  • [37] ONLINE AND OFF-LINE IDENTIFICATION OF LINEAR STATE-SPACE MODELS
    MOONEN, M
    DEMOOR, B
    VANDENBERGHE, L
    VANDEWALLE, J
    INTERNATIONAL JOURNAL OF CONTROL, 1989, 49 (01) : 219 - 232
  • [38] Interval analysis for guaranteed non-linear parameter and state estimation
    Kieffer, M
    Walter, E
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2005, 11 (02) : 171 - 181
  • [39] Non-linear dynamic state-space network modeling for decoding neurodegeneration
    Venkata C.Chirumamilla
    Chi Wang Ip
    Martin Reich
    Robert Peach
    Jens Volkmann
    Bahman Nasseroleslami
    Muthuraman Muthuraman
    Neural Regeneration Research, 2024, 19 (09) : 1879 - 1880
  • [40] Non-linear State Estimator for the On-line Control of a Sinter Plant
    Saiz, Jesus
    Jose Posada, Maria
    ISIJ INTERNATIONAL, 2013, 53 (09) : 1658 - 1664