On simultaneous on-line state and parameter estimation in non-linear state-space models

被引:50
|
作者
Tulsyan, Aditya [1 ]
Huang, Biao [1 ]
Gopaluni, R. Bhushan [2 ,3 ]
Forbes, J. Fraser [1 ]
机构
[1] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 2G6, Canada
[2] Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada
[3] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
基金
加拿大自然科学与工程研究理事会;
关键词
On-line estimation; Bayesian methods; Particle filters; Missing measurements; Stochastic non-linear systems; PARTICLE FILTERS; IDENTIFICATION;
D O I
10.1016/j.jprocont.2013.01.010
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
On-line estimation plays an important role in process control and monitoring. Obtaining a theoretical solution to the simultaneous state-parameter estimation problem for non-linear stochastic systems involves solving complex multi-dimensional integrals that are not amenable to analytical solution. While basic sequential Monte-Carlo (SMC) or particle filtering (PF) algorithms for simultaneous estimation exist, it is well recognized that there is a need for making these on-line algorithms non-degenerate, fast and applicable to processes with missing measurements. To overcome the deficiencies in traditional algorithms, this work proposes a Bayesian approach to on-line state and parameter estimation. Its extension to handle missing data in real-time is also provided. The simultaneous estimation is performed by filtering an extended vector of states and parameters using an adaptive sequential-importance-resampling (SIR) filter with a kernel density estimation method. The approach uses an on-line optimization algorithm based on Kullback-Leibler (KL) divergence to allow adaptation of the SIR filter for combined state-parameter estimation. An optimal tuning rule to control the width of the kernel and the variance of the artificial noise added to the parameters is also proposed. The approach is illustrated through numerical examples. (c) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:516 / 526
页数:11
相关论文
共 50 条
  • [1] On-line parameter estimation in general state-space models
    Andrieu, Christophe
    Doucet, Arnaud
    Tadic, Vladislav B.
    2005 44th IEEE Conference on Decision and Control & European Control Conference, Vols 1-8, 2005, : 332 - 337
  • [2] PARAMETER ESTIMATION IN NON-LINEAR STATE-SPACE MODELS BY AUTOMATIC DIFFERENTIATION OF NON-LINEAR KALMAN FILTERS
    Gorad, Ajinkya
    Zhao, Zheng
    Sarkka, Simo
    PROCEEDINGS OF THE 2020 IEEE 30TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2020,
  • [3] An Introduction to Twisted Particle Filters and Parameter Estimation in Non-Linear State-Space Models
    Ala-Luhtala, Juha
    Whiteley, Nick
    Heine, Kari
    Piche, Robert
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2016, 64 (18) : 4875 - 4890
  • [4] Robust Estimation in Non-Linear State-Space Models With State-Dependent Noise
    Agamennoni, Gabriel
    Nebot, Eduardo M.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (08) : 2165 - 2175
  • [5] Robust Non-linear Smoother for State-space Models
    Agamennoni, Gabriel
    Nebot, Eduardo M.
    2013 16TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2013, : 1044 - 1050
  • [6] Bias compensation-based parameter and state estimation for a class of time-delay non-linear state-space models
    Gu, Ya
    Zhu, Quanmin
    Nouri, Hassan
    IET CONTROL THEORY AND APPLICATIONS, 2020, 14 (15): : 2176 - 2185
  • [7] ON-LINE BAYESIAN PARAMETER ESTIMATION IN ELECTROCARDIOGRAM STATE SPACE MODELS
    Suotsalo, Kimmo
    Sarkka, Simo
    2018 IEEE 28TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2018,
  • [8] Distributed and Recursive Parameter Estimation in Parametrized Linear State-Space Models
    Ram, S. Sundhar
    Veeravalli, Venugopal V.
    Nedic, Angelia
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (02) : 488 - 492
  • [9] Recursive subspace identification of linear and non-linear Wiener state-space models
    Lovera, M
    Gustafsson, T
    Verhaegen, M
    AUTOMATICA, 2000, 36 (11) : 1639 - 1650
  • [10] GLOBAL APPROACHES TO IDENTIFIABILITY TESTING FOR LINEAR AND NON-LINEAR STATE-SPACE MODELS
    WALTER, E
    LECOURTIER, Y
    MATHEMATICS AND COMPUTERS IN SIMULATION, 1982, 24 (06) : 472 - 482