Communication: Explicitly-correlated second-order correction to the correlation energy in the random-phase approximation

被引:11
|
作者
Hehn, Anna-Sophia [1 ]
Klopper, Wim [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Phys Chem, Theoret Chem Grp, D-76049 Karlsruhe, Germany
来源
JOURNAL OF CHEMICAL PHYSICS | 2013年 / 138卷 / 18期
关键词
CONSISTENT BASIS-SETS; AUXILIARY BASIS-SETS; GAUSSIAN-BASIS SETS; ELECTRONIC-STRUCTURE; WAVE-FUNCTIONS; IDENTITY APPROXIMATION; MOLECULAR CALCULATIONS; SEXTUPLE ZETA; RESOLUTION; TURBOMOLE;
D O I
10.1063/1.4804282
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Within the framework of density-functional theory, the basis-set convergence of energies obtained from the random-phase approximation to the correlation energy is equally slow as in wavefunction theory, as for example in coupled-cluster or many-body perturbation theory. Fortunately, the slow basis-set convergence of correlation energies obtained in the random-phase approximation can be accelerated in exactly the same manner as in wavefunction theory, namely by using explicitly correlated two-electron basis functions that are functions of the interelectronic distances. This is demonstrated in the present work. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Explicitly correlated second-order Moller-Plesset methods with auxiliary basis sets
    Klopper, W
    Samson, CCM
    JOURNAL OF CHEMICAL PHYSICS, 2002, 116 (15): : 6397 - 6410
  • [42] Pair natural orbitals in explicitly correlated second-order moller-plesset theory
    Tew, David P.
    Haettig, Christof
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2013, 113 (03) : 224 - 229
  • [43] Monte Carlo explicitly correlated second-order many-body perturbation theory
    Johnson, Cole M.
    Doran, Alexander E.
    Zhang, Jinmei
    Valeev, Edward F.
    Hirata, So
    JOURNAL OF CHEMICAL PHYSICS, 2016, 145 (15):
  • [44] Local explicitly correlated second-order perturbation theory for the accurate treatment of large molecules
    Adler, Thomas B.
    Werner, Hans-Joachim
    Manby, Frederick R.
    JOURNAL OF CHEMICAL PHYSICS, 2009, 130 (05):
  • [45] Analytical Second-Order Properties for the Random Phase Approximation: Nuclear Magnetic Resonance Shieldings
    Drontschenko, Viktoria
    Bangerter, Felix H.
    Ochsenfeld, Christian
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (21) : 7542 - 7554
  • [46] Density functional for short-range correlation: Accuracy of the random-phase approximation for isoelectronic energy changes
    Yan, ZD
    Perdew, JP
    Kurth, S
    PHYSICAL REVIEW B, 2000, 61 (24) : 16430 - 16439
  • [47] Beyond-mean-field corrections within the second random-phase approximation
    Grasso, M.
    Gambacurta, D.
    Engel, J.
    XXI INTERNATIONAL SCHOOL ON NUCLEAR PHYSICS, NEUTRON PHYSICS AND APPLICATIONS & INTERNATIONAL SYMPOSIUM ON EXOTIC NUCLEI (ISEN-2015), 2016, 724
  • [48] Magnetic dipole excitations in magic nuclei with subtracted second random-phase approximation
    Yang, M. J.
    Bai, C. L.
    Sagawa, H.
    Zhang, H. Q.
    PHYSICAL REVIEW C, 2024, 109 (05)
  • [49] Second random-phase approximation, Thouless' theorem, and the stability condition reexamined and clarified
    Papakonstantinou, P.
    PHYSICAL REVIEW C, 2014, 90 (02):
  • [50] Beyond the GW approximation: A second-order screened exchange correction
    Ren, Xinguo
    Marom, Noa
    Caruso, Fabio
    Scheffler, Matthias
    Rinke, Patrick
    PHYSICAL REVIEW B, 2015, 92 (08)