Communication: Explicitly-correlated second-order correction to the correlation energy in the random-phase approximation

被引:11
|
作者
Hehn, Anna-Sophia [1 ]
Klopper, Wim [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Phys Chem, Theoret Chem Grp, D-76049 Karlsruhe, Germany
来源
JOURNAL OF CHEMICAL PHYSICS | 2013年 / 138卷 / 18期
关键词
CONSISTENT BASIS-SETS; AUXILIARY BASIS-SETS; GAUSSIAN-BASIS SETS; ELECTRONIC-STRUCTURE; WAVE-FUNCTIONS; IDENTITY APPROXIMATION; MOLECULAR CALCULATIONS; SEXTUPLE ZETA; RESOLUTION; TURBOMOLE;
D O I
10.1063/1.4804282
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Within the framework of density-functional theory, the basis-set convergence of energies obtained from the random-phase approximation to the correlation energy is equally slow as in wavefunction theory, as for example in coupled-cluster or many-body perturbation theory. Fortunately, the slow basis-set convergence of correlation energies obtained in the random-phase approximation can be accelerated in exactly the same manner as in wavefunction theory, namely by using explicitly correlated two-electron basis functions that are functions of the interelectronic distances. This is demonstrated in the present work. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Beyond the Random-Phase Approximation for the Electron Correlation Energy: The Importance of Single Excitations
    Ren, Xinguo
    Tkatchenko, Alexandre
    Rinke, Patrick
    Scheffler, Matthias
    PHYSICAL REVIEW LETTERS, 2011, 106 (15)
  • [22] Communication: Two-component ring-coupled-cluster computation of the correlation energy in the random-phase approximation
    Krause, Katharina
    Klopper, Wim
    JOURNAL OF CHEMICAL PHYSICS, 2013, 139 (19):
  • [23] Random-phase approximation correlation methods for molecules and solids
    Hesselmann, A.
    Goerling, A.
    MOLECULAR PHYSICS, 2011, 109 (21) : 2473 - 2500
  • [24] GENERALIZED RANDOM-PHASE APPROXIMATION IN THE THEORY OF STRONGLY CORRELATED SYSTEMS
    IZYUMOV, YA
    LETFULOV, BM
    SHIPITSYN, EV
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1992, 4 (49) : 9955 - 9970
  • [25] Assessment of correlation energies based on the random-phase approximation
    Paier, Joachim
    Ren, Xinguo
    Rinke, Patrick
    Scuseria, Gustavo E.
    Grueneis, Andreas
    Kresse, Georg
    Scheffler, Matthias
    NEW JOURNAL OF PHYSICS, 2012, 14
  • [26] Subtraction method in the second random-phase approximation: First applications with a Skyrme energy functional
    Gambacurta, D.
    Grasso, M.
    Engel, J.
    PHYSICAL REVIEW C, 2015, 92 (03):
  • [27] Analytical energy gradients for explicitly correlated wave functions. I. Explicitly correlated second-order Moller-Plesset perturbation theory
    Gyoerffy, Werner
    Knizia, Gerald
    Werner, Hans-Joachim
    JOURNAL OF CHEMICAL PHYSICS, 2017, 147 (21):
  • [28] Accurate electron correlation energy functional: Expansion in the interaction renormalized by the random-phase approximation
    Benites, Mario
    Rosado, Angel
    Manousakis, Efstratios
    PHYSICAL REVIEW B, 2024, 110 (19)
  • [29] Second random-phase approximation with the Gogny force: First applications
    Gambacurta, D.
    Grasso, M.
    De Donno, V.
    Co', G.
    Catara, F.
    PHYSICAL REVIEW C, 2012, 86 (02):
  • [30] A scaled explicitly correlated F12 correction to second-order MOller-Plesset perturbation theory
    Urban, L.
    Thompson, T. H.
    Ochsenfeld, C.
    JOURNAL OF CHEMICAL PHYSICS, 2021, 154 (04):