Communication: Explicitly-correlated second-order correction to the correlation energy in the random-phase approximation

被引:11
|
作者
Hehn, Anna-Sophia [1 ]
Klopper, Wim [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Phys Chem, Theoret Chem Grp, D-76049 Karlsruhe, Germany
来源
JOURNAL OF CHEMICAL PHYSICS | 2013年 / 138卷 / 18期
关键词
CONSISTENT BASIS-SETS; AUXILIARY BASIS-SETS; GAUSSIAN-BASIS SETS; ELECTRONIC-STRUCTURE; WAVE-FUNCTIONS; IDENTITY APPROXIMATION; MOLECULAR CALCULATIONS; SEXTUPLE ZETA; RESOLUTION; TURBOMOLE;
D O I
10.1063/1.4804282
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Within the framework of density-functional theory, the basis-set convergence of energies obtained from the random-phase approximation to the correlation energy is equally slow as in wavefunction theory, as for example in coupled-cluster or many-body perturbation theory. Fortunately, the slow basis-set convergence of correlation energies obtained in the random-phase approximation can be accelerated in exactly the same manner as in wavefunction theory, namely by using explicitly correlated two-electron basis functions that are functions of the interelectronic distances. This is demonstrated in the present work. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] A second-order doubles correction to excitation energies in the random-phase approximation
    Christiansen, O
    Bak, KL
    Koch, H
    Sauer, SPA
    CHEMICAL PHYSICS LETTERS, 1998, 284 (1-2) : 47 - 55
  • [2] Interference-corrected explicitly-correlated second-order perturbation theory
    Vogiatzis, Konstantinos D.
    Barnes, Ericka C.
    Klopper, Wim
    CHEMICAL PHYSICS LETTERS, 2011, 503 (1-3) : 157 - 161
  • [3] Application of the second-order ground-state correlation and random-phase approximation on photoionization cross section of manganese
    Lu, PF
    Liu, JC
    Yang, XD
    Ma, XG
    CHINESE PHYSICS, 2003, 12 (02): : 159 - 163
  • [4] Assessment of the Second-Order Statically Screened Exchange Correction to the Random Phase Approximation for Correlation Energies
    Forster, Arno
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2022, : 5948 - 5965
  • [5] Communication: Stochastic evaluation of explicitly correlated second-order many-body perturbation energy
    Willow, Soohaeng Yoo
    Zhang, Jinmei
    Valeev, Edward F.
    Hirata, So
    JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (03):
  • [6] Integral representation of the random-phase approximation correlation energy
    Dönau, F
    Almehed, D
    Nazmitdinov, RG
    PHYSICAL REVIEW LETTERS, 1999, 83 (02) : 280 - 283
  • [7] Analytic Calculation of First-order Molecular Properties at the Explicitly-correlated Second-order Moller-Plesset Level
    Hoefener, Sebastian
    Haettig, Christof
    Klopper, Wim
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 2010, 224 (3-4): : 695 - 708
  • [8] Extension of the second random-phase approximation
    Gambacurta, D
    Grasso, M
    Catara, F
    Sambataro, M
    PHYSICAL REVIEW C, 2006, 73 (02):
  • [9] Third-order corrections to random-phase approximation correlation energies
    Hesselmann, Andreas
    JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (20):
  • [10] The extended explicitly-correlated second-order approximate coupled-cluster singles and doubles ansatz suitable for response theory
    Hoefener, Sebastian
    Schieschke, Nils
    Klopper, Wim
    Koehn, Andreas
    JOURNAL OF CHEMICAL PHYSICS, 2019, 150 (18):