Non-Equilibrium Liouville and Wigner Equations: Classical Statistical Mechanics and Chemical Reactions for Long Times

被引:2
|
作者
Alvarez-Estrada, Ramon F. [1 ]
机构
[1] Univ Complutense, Dept Fis Teor, Fac Ciencias Fis, E-28040 Madrid, Spain
关键词
non-equilibrium Liouville and Wigner distributions; equilibrium solutions and orthogonal polynomials; long-term irreversible approach of non-equilibrium moments to thermal equilibrium; chemical reactions for two and three particles; QUANTUM BROWNIAN-MOTION; MOMENT METHODS; LIONVILLE; DYNAMICS;
D O I
10.3390/e21020179
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We review and improve previous work on non-equilibrium classical and quantum statistical systems, subject to potentials, without ab initio dissipation. We treat classical closed three-dimensional many-particle interacting systems without any heat bath (hb), evolving through the Liouville equation for the non-equilibrium classical distribution Wc, with initial states describing thermal equilibrium at large distances but non-equilibrium at finite distances. We use Boltzmann's Gaussian classical equilibrium distribution Wc,eq, as weight function to generate orthogonal polynomials (Hn's) in momenta. The moments of Wc, implied by the Hn's, fulfill a non-equilibrium hierarchy. Under long-term approximations, the lowest moment dominates the evolution towards thermal equilibrium. A non-increasing Liapunov function characterizes the long-term evolution towards equilibrium. Non-equilibrium chemical reactions involving two and three particles in a hb are studied classically and quantum-mechanically (by using Wigner functions W). Difficulties related to the non-positivity of W are bypassed. Equilibrium Wigner functions Weq generate orthogonal polynomials, which yield non-equilibrium moments of W and hierarchies. In regimes typical of chemical reactions (short thermal wavelength and long times), non-equilibrium hierarchies yield approximate Smoluchowski-like equations displaying dissipation and quantum effects. The study of three-particle chemical reactions is new.
引用
收藏
页数:30
相关论文
共 50 条
  • [42] EXPANSION FORMULAS IN NON-EQUILIBRIUM STATISTICAL-MECHANICS
    SHIBATA, F
    ARIMITSU, T
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1980, 49 (03) : 891 - 897
  • [43] NON-EQUILIBRIUM STATISTICAL MECHANICS OF A SIMPLE FINITE SYSTEM
    DAVIDSON, R
    KOZAK, JJ
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1970, 15 (01): : 34 - &
  • [44] Non-equilibrium statistical mechanics of complex systems: An overview
    Luzzi, R.
    Vasconcellos, A. R.
    Ramos, J. G.
    RIVISTA DEL NUOVO CIMENTO, 2007, 30 (03): : 95 - 157
  • [45] Mathematical theory of non-equilibrium quantum statistical mechanics
    Jaksíc, V
    Pillet, CA
    JOURNAL OF STATISTICAL PHYSICS, 2002, 108 (5-6) : 787 - 829
  • [46] Non-equilibrium statistical mechanics of complex systems: An overview
    R. Luzzi
    Á. R. Vasconoellos
    J. G. Ramos
    La Rivista del Nuovo Cimento, 2007, 30 : 95 - 157
  • [47] GENERATING FUNCTIONALS IN NON-EQUILIBRIUM STATISTICAL-MECHANICS
    KALASHNIKOV, VP
    AUSLENDER, MI
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 1979, 27 (08): : 355 - 402
  • [48] Positive Commutators in Non-Equilibrium Quantum Statistical Mechanics
    Marco Merkli
    Communications in Mathematical Physics, 2001, 223 : 327 - 362
  • [49] Mathematical Theory of Non-Equilibrium Quantum Statistical Mechanics
    V. Jakšić
    C.-A. Pillet
    Journal of Statistical Physics, 2002, 108 : 787 - 829
  • [50] A NON-EQUILIBRIUM STATISTICAL MECHANICS MODEL ON BIOFILM GROWTH
    Cheng, H. X.
    Li, C. Y.
    Zheng, Y.
    Chai, L. H.
    JOURNAL OF INVESTIGATIVE MEDICINE, 2013, 61 (04) : S22 - S22