Positive Commutators in Non-Equilibrium Quantum Statistical Mechanics

被引:0
|
作者
Marco Merkli
机构
[1] Department of Mathematics,
[2] University of Toronto,undefined
[3] Toronto,undefined
[4] Ontario,undefined
[5] M5S 3G3,undefined
[6] Canada,undefined
来源
关键词
Equilibrium State; Spectral Analysis; Quantum Statistical; Quantum System; Statistical Mechanic;
D O I
暂无
中图分类号
学科分类号
摘要
The method of positive commutators, developed for zero temperature problems over the last twenty years, has been an essential tool in the spectral analysis of Hamiltonians in quantum mechanics. We extend this method to positive temperatures, i.e. to non-equilibrium quantum statistical mechanics. We use the positive commutator technique to give an alternative proof of a fundamental property of a certain class of large quantum systems, called Return to Equilibrium. This property says that equilibrium states are (asymptotically) stable: if a system is slightly perturbed from its equilibrium state, then it converges back to that equilibrium state as time goes to infinity.
引用
收藏
页码:327 / 362
页数:35
相关论文
共 50 条
  • [1] Positive commutators in non equilibrium quantum statistical mechanics
    Merkli, M
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 223 (02) : 327 - 362
  • [2] Prolegomena to a non-equilibrium quantum statistical mechanics
    Adami, C.
    Cerf, N.J.
    Chaos, solitons and fractals, 1999, 10 (10): : 1637 - 1650
  • [3] Prolegomena to a non-equilibrium quantum statistical mechanics
    Adami, C
    Cerf, NJ
    CHAOS SOLITONS & FRACTALS, 1999, 10 (10) : 1637 - 1650
  • [4] Topics in non-equilibrium quantum statistical mechanics
    Aschbacher, Walter
    Jaksic, Vojkan
    Pautrat, Yan
    Pillet, Claude-Alain
    OPEN QUANTUM SYSTEMS III: RECENT DEVELOPMENTS, 2006, 1882 : 1 - 66
  • [5] Mathematical theory of non-equilibrium quantum statistical mechanics
    Jaksíc, V
    Pillet, CA
    JOURNAL OF STATISTICAL PHYSICS, 2002, 108 (5-6) : 787 - 829
  • [6] Non-equilibrium statistical mechanics of classical and quantum systems
    Kusnezov, D
    Lutz, E
    Aoki, K
    DYNAMICS OF DISSIPATION, 2002, 597 : 83 - 108
  • [7] Mathematical Theory of Non-Equilibrium Quantum Statistical Mechanics
    V. Jakšić
    C.-A. Pillet
    Journal of Statistical Physics, 2002, 108 : 787 - 829
  • [8] QUANTUM HYPOTHESIS TESTING AND NON-EQUILIBRIUM STATISTICAL MECHANICS
    Jaksic, V.
    Ogata, Y.
    Pillet, C-A
    Seiringer, R.
    REVIEWS IN MATHEMATICAL PHYSICS, 2012, 24 (06)
  • [9] NON-EQUILIBRIUM STATISTICAL MECHANICS
    WALLIS, G
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-LEIPZIG, 1964, 227 (1-2): : 140 - &
  • [10] ON APPLICATION OF NON-EQUILIBRIUM STATISTICAL MECHANICS TO QUANTUM FIELD THEORY
    PRIGOGIN.I
    MAYNE, F
    PHYSICS LETTERS, 1966, 21 (01): : 42 - &