The diameter and Laplacian eigenvalues of directed graphs

被引:0
|
作者
Chung, F [1 ]
机构
[1] Univ Calif San Diego, La Jolla, CA 92093 USA
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2006年 / 13卷 / 01期
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For undirected graphs it has been known for some time that one can bound the diameter using the eigenvalues. In this note we give a similar result for the diameter of strongly connected directed graphs G, namely D(G) <= [log(2-lambda)/(2)/2 min(x)log(1/phi(x))] + 1 where lambda is the first non-trivial eigenvalue of the Laplacian and phi is the Perron vector of the transition probability matrix of a random walk on G.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] ON GRAPHS WITH THREE DISTINCT LAPLACIAN EIGENVALUES
    Wang Yi~1 Fan Yizheng~1 Tan Yingying~(1
    Applied Mathematics:A Journal of Chinese Universities(Series B), 2007, (04) : 478 - 484
  • [42] Distance signless Laplacian eigenvalues of graphs
    Das, Kinkar Chandra
    Lin, Huiqiu
    Guo, Jiming
    FRONTIERS OF MATHEMATICS IN CHINA, 2019, 14 (04) : 693 - 713
  • [43] A note on the signless Laplacian eigenvalues of graphs
    Wang, Jianfeng
    Belardo, Francesco
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (10) : 2585 - 2590
  • [44] On the multiplicities of normalized Laplacian eigenvalues of graphs
    Sun, Shaowei
    Das, Kinkar Chandra
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 609 : 365 - 385
  • [45] Distance signless Laplacian eigenvalues of graphs
    Kinkar Chandra Das
    Huiqiu Lin
    Jiming Guo
    Frontiers of Mathematics in China, 2019, 14 : 693 - 713
  • [46] On the multiplicity of Laplacian eigenvalues for unicyclic graphs
    Fei Wen
    Qiongxiang Huang
    Czechoslovak Mathematical Journal, 2022, 72 : 371 - 390
  • [47] Integer Laplacian eigenvalues of chordal graphs
    Abreu, Nair
    Justel, Claudia Marcela
    Markenzon, Lilian
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 614 : 68 - 81
  • [48] The diameter of directed graphs
    Dankelmann, P
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2005, 94 (01) : 183 - 186
  • [49] On the Eigenvalues of Weighted Directed Graphs
    Marwa Balti
    Complex Analysis and Operator Theory, 2017, 11 : 1387 - 1406
  • [50] On the Eigenvalues of Weighted Directed Graphs
    Balti, Marwa
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2017, 11 (06) : 1387 - 1406