The diameter and Laplacian eigenvalues of directed graphs

被引:0
|
作者
Chung, F [1 ]
机构
[1] Univ Calif San Diego, La Jolla, CA 92093 USA
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2006年 / 13卷 / 01期
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For undirected graphs it has been known for some time that one can bound the diameter using the eigenvalues. In this note we give a similar result for the diameter of strongly connected directed graphs G, namely D(G) <= [log(2-lambda)/(2)/2 min(x)log(1/phi(x))] + 1 where lambda is the first non-trivial eigenvalue of the Laplacian and phi is the Perron vector of the transition probability matrix of a random walk on G.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] On distance Laplacian and distance signless Laplacian eigenvalues of graphs
    Das, Kinkar Ch.
    Aouchiche, Mustapha
    Hansen, Pierre
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (11): : 2307 - 2324
  • [22] Chain graphs with simple Laplacian eigenvalues and their Laplacian dynamics
    Alazemi, Abdullah
    Andelic, Milica
    Koledin, Tamara
    Stanic, Zoran
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (01):
  • [23] Chain graphs with simple Laplacian eigenvalues and their Laplacian dynamics
    Abdullah Alazemi
    Milica Anđelić
    Tamara Koledin
    Zoran Stanić
    Computational and Applied Mathematics, 2023, 42
  • [24] Laplacian eigenvalues of weighted threshold graphs
    Andelic, Milica
    Stanic, Zoran
    COMPUTATIONAL & APPLIED MATHEMATICS, 2025, 44 (01):
  • [25] Bounds on normalized Laplacian eigenvalues of graphs
    Jianxi Li
    Ji-Ming Guo
    Wai Chee Shiu
    Journal of Inequalities and Applications, 2014
  • [26] On the distance and distance Laplacian eigenvalues of graphs
    Lin, Huiqiu
    Wu, Baoyindureng
    Chen, Yingying
    Shu, Jinlong
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 492 : 128 - 135
  • [27] Graphs with four distinct Laplacian eigenvalues
    Mohammadian, A.
    Tayfeh-Rezaie, B.
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2011, 34 (04) : 671 - 682
  • [28] Toughness and normalized Laplacian eigenvalues of graphs
    Huang, Xueyi
    Das, Kinkar Chandra
    Zhu, Shunlai
    APPLIED MATHEMATICS AND COMPUTATION, 2022, 425
  • [29] On the normalized distance laplacian eigenvalues of graphs
    Ganie, Hilal A.
    Rather, Bilal Ahmad
    Das, Kinkar Chandra
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 438
  • [30] On the second largest Laplacian eigenvalues of graphs
    Li, Jianxi
    Guo, Ji-Ming
    Shiu, Wai Chee
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (05) : 2438 - 2446