Scanning-probe Single-electron Capacitance Spectroscopy

被引:0
|
作者
Walsh, Kathleen A. [1 ]
Romanowich, Megan E. [1 ]
Gasseller, Morewell [1 ,2 ]
Kuljanishvili, Irma [1 ,3 ]
Ashoori, Raymond [4 ]
Tessmer, Stuart [1 ]
机构
[1] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA
[2] Mercyhurst Univ, Dept Chem & Biochem Phys, Erie, PA 16546 USA
[3] St Louis Univ, Dept Phys, St Louis, MO 63103 USA
[4] MIT, Dept Phys, Cambridge, MA 02139 USA
来源
JOVE-JOURNAL OF VISUALIZED EXPERIMENTS | 2013年 / 77期
基金
美国国家科学基金会;
关键词
Physics; Issue; 77; Biophysics; Molecular Biology; Cellular Biology; Microscopy; Scanning Probe; Nanotechnology; Electronics; acceptors (solid state); donors (solid state); Solid-State Physics; tunneling microscopy; scanning capacitance microscopy; subsurface charge accumulation imaging; capacitance spectroscopy; scanning probe microscopy; single-electron spectroscopy; imaging;
D O I
10.3791/50676
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The integration of low-temperature scanning-probe techniques and single-electron capacitance spectroscopy represents a powerful tool to study the electronic quantum structure of small systems - including individual atomic dopants in semiconductors. Here we present a capacitance-based method, known as Subsurface Charge Accumulation (SCA) imaging, which is capable of resolving single-electron charging while achieving sufficient spatial resolution to image individual atomic dopants. The use of a capacitance technique enables observation of subsurface features, such as dopants buried many nanometers beneath the surface of a semiconductor material(1,2,3). In principle, this technique can be applied to any system to resolve electron motion below an insulating surface. As in other electric-field-sensitive scanned-probe techniques(4), the lateral spatial resolution of the measurement depends in part on the radius of curvature of the probe tip. Using tips with a small radius of curvature can enable spatial resolution of a few tens of nanometers. This fine spatial resolution allows investigations of small numbers (down to one) of subsurface dopants(1,2). The charge resolution depends greatly on the sensitivity of the charge detection circuitry; using high electron mobility transistors (HEMT) in such circuits at cryogenic temperatures enables a sensitivity of approximately 0.01 electrons/Hz(1/2) at 0.3 K-5.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Effect of cross capacitance in three-junction single-electron transistors
    Kim, J
    Oh, S
    Park, JW
    Lee, JO
    Kwon, HC
    Park, SI
    Kim, KT
    Yoo, KH
    Kim, JJ
    PHYSICAL REVIEW B, 1999, 59 (03) : 1629 - 1632
  • [42] CRYOGENIC PRECISION CAPACITANCE BRIDGE USING A SINGLE-ELECTRON TUNNELING ELECTROMETER
    GHOSH, RN
    WILLIAMS, ER
    CLARK, AF
    SOULEN, RJ
    PHYSICA B, 1994, 194 : 1007 - 1008
  • [43] Tunable Negative Differential Resistance of Single-Electron Transistor Controlled by Capacitance
    Chen, Xiaobao
    Xing, Zuocheng
    Sui, Bingcai
    COMPUTER ENGINEERING AND TECHNOLOGY, NCCET 2013, 2013, 396 : 228 - 234
  • [44] Silicon single-electron transistors and single-electron CCD
    Takahashi, Y
    Fujiwara, A
    Ono, Y
    Inokawa, H
    MATERIALS ISSUES IN NOVEL SI-BASED TECHNOLOGY, 2002, 686 : 181 - 191
  • [45] Nanolithography on hydrogen-terminated silicon by scanning-probe microscopy
    Schonenberger, C
    Kramer, N
    MICROELECTRONIC ENGINEERING, 1996, 32 (1-4) : 203 - 217
  • [46] Microgrinding of lensed fibers by means of a scanning-probe microscope setup
    Yakunin, Sergii
    Heitz, Johannes
    APPLIED OPTICS, 2009, 48 (32) : 6172 - 6177
  • [47] Single-electron transistor backaction on the single-electron box
    Turek, BA
    Lehnert, KW
    Clerk, A
    Gunnarsson, D
    Bladh, K
    Delsing, P
    Schoelkopf, RJ
    PHYSICAL REVIEW B, 2005, 71 (19):
  • [48] Fabrication of four-probe fine electrodes using scanning-probe nanofabrication
    Akai, T
    Abe, T
    Shimomura, T
    Kato, M
    Ishibashi, M
    Heike, S
    Choi, BK
    Hashizume, T
    Ito, K
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2003, 42 (7B): : 4764 - 4766
  • [49] Low-Temperature Scanning Capacitance Probe for Imaging Electron Motion
    Bhandari, S.
    Westervelt, R. M.
    27TH INTERNATIONAL CONFERENCE ON LOW TEMPERATURE PHYSICS (LT27), PTS 1-5, 2014, 568
  • [50] Scanned Single-Electron Probe inside a Silicon Electronic Device
    Ng, Kevin S. H.
    Voisin, Benoit
    Johnson, Brett C.
    McCallum, Jeffrey C.
    Salfi, Joe
    Rogge, Sven
    ACS NANO, 2020, 14 (08) : 9449 - 9455