Scanning-probe Single-electron Capacitance Spectroscopy

被引:0
|
作者
Walsh, Kathleen A. [1 ]
Romanowich, Megan E. [1 ]
Gasseller, Morewell [1 ,2 ]
Kuljanishvili, Irma [1 ,3 ]
Ashoori, Raymond [4 ]
Tessmer, Stuart [1 ]
机构
[1] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA
[2] Mercyhurst Univ, Dept Chem & Biochem Phys, Erie, PA 16546 USA
[3] St Louis Univ, Dept Phys, St Louis, MO 63103 USA
[4] MIT, Dept Phys, Cambridge, MA 02139 USA
来源
JOVE-JOURNAL OF VISUALIZED EXPERIMENTS | 2013年 / 77期
基金
美国国家科学基金会;
关键词
Physics; Issue; 77; Biophysics; Molecular Biology; Cellular Biology; Microscopy; Scanning Probe; Nanotechnology; Electronics; acceptors (solid state); donors (solid state); Solid-State Physics; tunneling microscopy; scanning capacitance microscopy; subsurface charge accumulation imaging; capacitance spectroscopy; scanning probe microscopy; single-electron spectroscopy; imaging;
D O I
10.3791/50676
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The integration of low-temperature scanning-probe techniques and single-electron capacitance spectroscopy represents a powerful tool to study the electronic quantum structure of small systems - including individual atomic dopants in semiconductors. Here we present a capacitance-based method, known as Subsurface Charge Accumulation (SCA) imaging, which is capable of resolving single-electron charging while achieving sufficient spatial resolution to image individual atomic dopants. The use of a capacitance technique enables observation of subsurface features, such as dopants buried many nanometers beneath the surface of a semiconductor material(1,2,3). In principle, this technique can be applied to any system to resolve electron motion below an insulating surface. As in other electric-field-sensitive scanned-probe techniques(4), the lateral spatial resolution of the measurement depends in part on the radius of curvature of the probe tip. Using tips with a small radius of curvature can enable spatial resolution of a few tens of nanometers. This fine spatial resolution allows investigations of small numbers (down to one) of subsurface dopants(1,2). The charge resolution depends greatly on the sensitivity of the charge detection circuitry; using high electron mobility transistors (HEMT) in such circuits at cryogenic temperatures enables a sensitivity of approximately 0.01 electrons/Hz(1/2) at 0.3 K-5.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] A refrigerator magnet analog of scanning-probe microscopy
    Lorenz, JK
    Olson, JA
    Campbell, DJ
    Lisensky, GC
    Ellis, AB
    JOURNAL OF CHEMICAL EDUCATION, 1997, 74 (09) : A1032 - A1032
  • [22] Photoassisted scanning-probe nanolithography on Ti films
    Ageev A.O.
    Konoplev B.G.
    Polyakov V.V.
    Svetlichnyi A.M.
    Smirnov V.A.
    Russian Microelectronics, 2007, 36 (6) : 353 - 357
  • [23] SINGLE-ELECTRON CAPACITANCE SPECTROSCOPY OF FEW-ELECTRON ARTIFICIAL ATOMS IN A MAGNETIC-FIELD - THEORY AND EXPERIMENT
    HAWRYLAK, P
    PHYSICAL REVIEW LETTERS, 1993, 71 (20) : 3347 - 3350
  • [24] In-plane gate single-electron transistor in Ga[Al]As fabricated by scanning probe lithography
    Solid State Physics Laboratory, ETH Zürich, CH-8093 Zürich, Switzerland
    不详
    不详
    Appl Phys Lett, 16 (2452-2454):
  • [25] In-plane gate single-electron transistor in Ga[Al]As fabricated by scanning probe lithography
    Lüscher, S
    Fuhrer, A
    Held, R
    Heinzel, T
    Ensslin, K
    Wegscheider, W
    APPLIED PHYSICS LETTERS, 1999, 75 (16) : 2452 - 2454
  • [26] Probe modification for scanning-probe microscopy by the focused ion beam method
    Konoplev B.G.
    Ageev O.A.
    Smirnov V.A.
    Kolomiitsev A.S.
    Serbu N.I.
    Russian Microelectronics, 2012, 41 (1) : 41 - 50
  • [27] APPLICATION OF SINGLE-ELECTRON TUNNELING - PRECISION CAPACITANCE RATIO MEASUREMENTS
    CLARK, AF
    ZIMMERMAN, NM
    WILLIAMS, ER
    AMAR, A
    SONG, D
    WELLSTOOD, FC
    LOBB, CJ
    SOULEN, RJ
    APPLIED PHYSICS LETTERS, 1995, 66 (19) : 2588 - 2590
  • [28] Standards of current and capacitance based on single-electron tunneling devices
    Keller, MW
    RECENT ADVANCES IN METROLOGY AND FUNDAMENTAL CONSTANTS, 2001, 146 : 291 - 316
  • [29] Measurement of the frequency dependence of a single-electron tunneling capacitance standard
    Eichenberger, AL
    Keller, MW
    Martinis, JM
    Zimmerman, NM
    2000 CONFERENCE ON PRECISION ELECTROMAGNETIC MEASUREMENTS DIGEST, 2000, : 16 - 17
  • [30] Dynamic Single-Electron Transistor Model with Capacitance Analysis Capability
    Singh, Alka
    Nishimura, Tomoki
    Satoh, Hiroaki
    Inokawa, Hiroshi
    2022 IEEE SILICON NANOELECTRONICS WORKSHOP (SNW), 2022,