Global solvability and global hypoellipticity in Gevrey classes for vector fields on the torus

被引:14
|
作者
Bergamasco, A. P. [1 ]
Dattori da Silva, P. L. [1 ]
Gonzalez, R. B. [2 ]
机构
[1] Univ Sao Paulo, Inst Ciencias Matemat & Comp, Dept Matemat, Caixa Postal 668, BR-13560970 Sao Carlos, SP, Brazil
[2] Univ Fed Parana, Dept Matemat, Caixa Postal 19081, BR-81531990 Curitiba, Parana, Brazil
基金
巴西圣保罗研究基金会;
关键词
Gevrey solvability; Gevrey hypoellipticity; Vector fields; Periodic solutions; Fourier series;
D O I
10.1016/j.jde.2017.11.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L = partial derivative/partial derivative t + Sigma(N)(j=1) (a(j)+ib(j)) (t) partial derivative/partial derivative x(j) be a vector field defined on the torus TN+1 similar or equal to RN+1 /2 Pi Z(N+1,) where a(j),b(j) are real-valued functions and belonging to the Gevrey class G(s)(T-1), s > 1, for j= 1,..., N. We present a complete characterization for the s-global solvability and s-global hypoellipticity of L. Our results are linked to Diophantine properties of the coefficients and, also, connectedness of certain sublevel sets. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:3500 / 3526
页数:27
相关论文
共 50 条
  • [41] Global solvability on the torus for certain classes of formally self-adjoint operators
    Petronilho, G
    MANUSCRIPTA MATHEMATICA, 2000, 103 (01) : 9 - 18
  • [42] Solvability in the large for a class of vector fields on the torus
    Bergamasco, A. R.
    da Silva, P. L. Dattori
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2006, 86 (05): : 427 - 447
  • [43] GLOBAL SOLVABILITY FOR INVOLUTIVE SYSTEMS ON THE TORUS
    De Medeira, Cleber
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,
  • [44] Global solvability and hypoellipticity for evolution operators on tori and spheres
    Kirilov, Alexandre
    Kowacs, Andre Pedroso
    de Moraes, Wagner Augusto Almeida
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (12) : 4605 - 4650
  • [45] Global s-solvability, global s-hypoellipticity and Diophantine phenomena
    Petronilho, G
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2005, 16 (01): : 67 - 90
  • [46] Global hypoellipticity and simultaneous approximability in ultradifferentiable classes
    Barostichi, R. F.
    Ferra, I. A.
    Petronilho, G.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 453 (01) : 104 - 124
  • [47] Global Gevrey solvability for a class of perturbations of involutive systems
    Ferra, Igor A.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 270 : 994 - 1018
  • [48] Global Denjoy–Carleman hypoellipticity for a class of systems of complex vector fields and perturbations
    Bruno de Lessa Victor
    Alexandre Arias Junior
    Annali di Matematica Pura ed Applicata (1923 -), 2021, 200 : 1367 - 1398
  • [49] Gevrey semiglobal solvability for a class of elliptic vector fields with degeneracies
    Araujo, Gabriel
    Bergamasco, Adalberto P.
    da Silva, Paulo Dattori L.
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (08) : 3153 - 3172
  • [50] Global Hypoellipticity for a Class of Pseudo-differential Operators on the Torus
    Fernando de Ávila Silva
    Rafael Borro Gonzalez
    Alexandre Kirilov
    Cleber de Medeira
    Journal of Fourier Analysis and Applications, 2019, 25 : 1717 - 1758