Global solvability and global hypoellipticity in Gevrey classes for vector fields on the torus

被引:14
|
作者
Bergamasco, A. P. [1 ]
Dattori da Silva, P. L. [1 ]
Gonzalez, R. B. [2 ]
机构
[1] Univ Sao Paulo, Inst Ciencias Matemat & Comp, Dept Matemat, Caixa Postal 668, BR-13560970 Sao Carlos, SP, Brazil
[2] Univ Fed Parana, Dept Matemat, Caixa Postal 19081, BR-81531990 Curitiba, Parana, Brazil
基金
巴西圣保罗研究基金会;
关键词
Gevrey solvability; Gevrey hypoellipticity; Vector fields; Periodic solutions; Fourier series;
D O I
10.1016/j.jde.2017.11.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L = partial derivative/partial derivative t + Sigma(N)(j=1) (a(j)+ib(j)) (t) partial derivative/partial derivative x(j) be a vector field defined on the torus TN+1 similar or equal to RN+1 /2 Pi Z(N+1,) where a(j),b(j) are real-valued functions and belonging to the Gevrey class G(s)(T-1), s > 1, for j= 1,..., N. We present a complete characterization for the s-global solvability and s-global hypoellipticity of L. Our results are linked to Diophantine properties of the coefficients and, also, connectedness of certain sublevel sets. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:3500 / 3526
页数:27
相关论文
共 50 条