On one semidiscrete Galerkin method for a generalized time-dependent 2D Schrodinger equation

被引:0
|
作者
Zlotnik, A. [1 ,2 ]
Ducomet, B. [1 ]
Goutte, H. [1 ]
Berger, J. F. [1 ]
机构
[1] CEA DAM DIF, Serv Phys Nucl, F-91297 Arpajon, France
[2] Russian State Social Univ, Dept Appl Math, Moscow 129226, Russia
基金
俄罗斯基础研究基金会;
关键词
Generalized time-dependent 2D; Schrodinger equation; Semidiscrete Galerkin method; Error bounds;
D O I
10.1016/j.aml.2008.02.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An initial-boundary value problem for a generalized 2D Schrodinger equation in a rectangular domain is considered. Approximate solutions of the form c(1)(x(1),t) chi(1) (x(1),x(2)) + ... + c(N)(x(1),t) chi(N)(x(1),x(2)) are treated, where chi(1),..., chi(N) are the first N eigenfunctions of a 1D eigenvalue problem in X-2 depending parametrically on x(1) and c(1), ..., c(N) are coefficients to be defined; they are of interest for nuclear physics problems. The corresponding semidiscrete Galerkin approximate problem is stated and analyzed. Uniform-in-time error bounds of arbitrarily high orders 0 (N-theta log N) in L-2 and 0 (N-((theta-1)) log(1/2) N) in H-1, theta > 1, are proved. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:252 / 257
页数:6
相关论文
共 50 条