On one semidiscrete Galerkin method for a generalized time-dependent 2D Schrodinger equation

被引:0
|
作者
Zlotnik, A. [1 ,2 ]
Ducomet, B. [1 ]
Goutte, H. [1 ]
Berger, J. F. [1 ]
机构
[1] CEA DAM DIF, Serv Phys Nucl, F-91297 Arpajon, France
[2] Russian State Social Univ, Dept Appl Math, Moscow 129226, Russia
基金
俄罗斯基础研究基金会;
关键词
Generalized time-dependent 2D; Schrodinger equation; Semidiscrete Galerkin method; Error bounds;
D O I
10.1016/j.aml.2008.02.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An initial-boundary value problem for a generalized 2D Schrodinger equation in a rectangular domain is considered. Approximate solutions of the form c(1)(x(1),t) chi(1) (x(1),x(2)) + ... + c(N)(x(1),t) chi(N)(x(1),x(2)) are treated, where chi(1),..., chi(N) are the first N eigenfunctions of a 1D eigenvalue problem in X-2 depending parametrically on x(1) and c(1), ..., c(N) are coefficients to be defined; they are of interest for nuclear physics problems. The corresponding semidiscrete Galerkin approximate problem is stated and analyzed. Uniform-in-time error bounds of arbitrarily high orders 0 (N-theta log N) in L-2 and 0 (N-((theta-1)) log(1/2) N) in H-1, theta > 1, are proved. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:252 / 257
页数:6
相关论文
共 50 条
  • [31] On the Numerical Solution of the Time-Dependent Schrodinger Equation with Time-Dependent Potentials
    Rizea, M.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2008, 1048 : 1011 - 1015
  • [32] Analytic solutions, Darboux transformation operators and supersymmetry for a generalized one-dimensional time-dependent Schrodinger equation
    Tian, Shou-Fu
    Zhou, Sheng-Wu
    Jiang, Wu-You
    Zhang, Hong-Qing
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (13) : 7308 - 7321
  • [33] EXPLICIT INTEGRATION METHOD FOR TIME-DEPENDENT SCHRODINGER EQUATION FOR COLLISION PROBLEMS
    ASKAR, A
    CAKMAK, AS
    JOURNAL OF CHEMICAL PHYSICS, 1978, 68 (06): : 2794 - 2798
  • [34] Superconvergence analysis of finite element method for the time-dependent Schrodinger equation
    Wang, Jianyun
    Huang, Yunqing
    Tian, Zhikun
    Zhou, Jie
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (10) : 1960 - 1972
  • [35] A spectral method for integration of the time-dependent Schrodinger equation in hyperspherical coordinates
    Sorevik, T
    Madsen, LB
    Hansen, JP
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (31): : 6977 - 6985
  • [36] Precise integration for the time-dependent Schrodinger equation
    Zhang, Suying
    Li, Jiangdan
    ISND 2007: PROCEEDINGS OF THE 2007 INTERNATIONAL SYMPOSIUM ON NONLINEAR DYNAMICS, PTS 1-4, 2008, 96
  • [37] Solution to the Schrodinger Equation for the Time-Dependent Potential
    Long, Chao-Yun
    Qin, Shui-Jie
    Yang, Zhu-Hua
    Guo, Guang-Jie
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2009, 48 (04) : 981 - 985
  • [38] NUMERICAL SOLUTION OF TIME-DEPENDENT SCHRODINGER EQUATION
    WEINER, JH
    COMPUTER PHYSICS COMMUNICATIONS, 1972, 4 (01) : 10 - 10
  • [39] ON A VARIATIONAL PRINCIPLE FOR TIME-DEPENDENT SCHRODINGER EQUATION
    PRAT, R
    MOLECULAR PHYSICS, 1967, 13 (02) : 193 - &
  • [40] INVARIANT DOMAINS FOR TIME-DEPENDENT SCHRODINGER EQUATION
    RADIN, C
    SIMON, B
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1978, 29 (02) : 289 - 296