On one semidiscrete Galerkin method for a generalized time-dependent 2D Schrodinger equation

被引:0
|
作者
Zlotnik, A. [1 ,2 ]
Ducomet, B. [1 ]
Goutte, H. [1 ]
Berger, J. F. [1 ]
机构
[1] CEA DAM DIF, Serv Phys Nucl, F-91297 Arpajon, France
[2] Russian State Social Univ, Dept Appl Math, Moscow 129226, Russia
基金
俄罗斯基础研究基金会;
关键词
Generalized time-dependent 2D; Schrodinger equation; Semidiscrete Galerkin method; Error bounds;
D O I
10.1016/j.aml.2008.02.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An initial-boundary value problem for a generalized 2D Schrodinger equation in a rectangular domain is considered. Approximate solutions of the form c(1)(x(1),t) chi(1) (x(1),x(2)) + ... + c(N)(x(1),t) chi(N)(x(1),x(2)) are treated, where chi(1),..., chi(N) are the first N eigenfunctions of a 1D eigenvalue problem in X-2 depending parametrically on x(1) and c(1), ..., c(N) are coefficients to be defined; they are of interest for nuclear physics problems. The corresponding semidiscrete Galerkin approximate problem is stated and analyzed. Uniform-in-time error bounds of arbitrarily high orders 0 (N-theta log N) in L-2 and 0 (N-((theta-1)) log(1/2) N) in H-1, theta > 1, are proved. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:252 / 257
页数:6
相关论文
共 50 条
  • [1] An adaptive Galerkin method for the time-dependent complex Schrodinger equation
    Avila, A. I.
    Meister, A.
    Steigemann, M.
    APPLIED NUMERICAL MATHEMATICS, 2017, 121 : 149 - 169
  • [2] ON ONE VERSION OF A SEMIDISCRETE GALERKIN METHOD FOR PDE PROBLEMS INVOLVING A GENERALIZED 2D HAMILTONIAN OPERATOR
    Zlotnik, Alexander
    Ducomet, Bernard
    Goutte, Heloise
    Berger, Jean-Francois
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2009, 7 (02) : 247 - 295
  • [3] TIME-DEPENDENT SCHRODINGER EQUATION WITH ONE KNOWN SOLUTION
    Fityo, T. V.
    Tkachuk, V. M.
    JOURNAL OF PHYSICAL STUDIES, 2005, 9 (04): : 299 - 303
  • [4] GENERALIZED NONLINEAR SCHRODINGER-EQUATION WITH TIME-DEPENDENT DISSIPATION
    ADOMIAN, G
    MEYERS, RE
    APPLIED MATHEMATICS LETTERS, 1995, 8 (06) : 7 - 8
  • [5] A TREATMENT OF TIME-DEPENDENT PROBLEMS BY A GENERALIZED SCHRODINGER-EQUATION
    VENANZI, TJ
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1981, 26 (01): : 23 - 23
  • [6] Effective Potential from the Generalized Time-Dependent Schrodinger Equation
    Sandev, Trifce
    Petreska, Irina
    Lenzi, Ervin K.
    MATHEMATICS, 2016, 4 (04)
  • [7] A fast BDF2 Galerkin finite element method for the one-dimensional time-dependent Schrodinger equation with artificial boundary conditions
    Xie, Jiangming
    Li, Maojun
    APPLIED NUMERICAL MATHEMATICS, 2023, 187 : 89 - 106
  • [8] Generalized Pseudospectral Method for Solving the Time-Dependent Schrodinger Equation Involving the Coulomb Potential
    Zeng Si-Liang
    Zou Shi-Yang
    Yan Jun
    CHINESE PHYSICS LETTERS, 2009, 26 (05)
  • [9] Generalized adiabatic product expansion: A nonperturbative method of solving the time-dependent Schrodinger equation
    Mostafazadeh, A
    JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (07) : 3311 - 3326
  • [10] Analysis of the "Toolkit" Method for the Time-Dependent Schrodinger Equation
    Baudouin, Lucie
    Salomon, Julien
    Turinici, Gabriel
    JOURNAL OF SCIENTIFIC COMPUTING, 2011, 49 (02) : 111 - 136