Particle-Based Anisotropic Surface Meshing

被引:70
|
作者
Zhong, Zichun [1 ]
Guo, Xiaohu [1 ]
Wang, Wenping [2 ]
Levy, Bruno [3 ]
Sun, Feng [2 ]
Liu, Yang
Mao, Weihua [4 ]
机构
[1] Univ Texas Dallas, Richardson, TX 75083 USA
[2] Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China
[3] INRIA Nancy Grand Est, Nancy, France
[4] Univ Texas SW Med Ctr Dallas, Dallas, TX USA
来源
ACM TRANSACTIONS ON GRAPHICS | 2013年 / 32卷 / 04期
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
Anisotropic Meshing; Particle; Gaussian Kernel; CENTROIDAL VORONOI TESSELLATIONS; METRIC SPECIFICATIONS; GENERATION;
D O I
10.1145/2461912.2461946
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper introduces a particle-based approach for anisotropic surface meshing. Given an input polygonal mesh endowed with a Riemannian metric and a specified number of vertices, the method generates a metric-adapted mesh. The main idea consists of mapping the anisotropic space into a higher dimensional isotropic one, called "embedding space". The vertices of the mesh are generated by uniformly sampling the surface in this higher dimensional embedding space, and the sampling is further regularized by optimizing an energy function with a quasi-Newton algorithm. All the computations can be re-expressed in terms of the dot product in the embedding space, and the Jacobian matrices of the mappings that connect different spaces. This transform makes it unnecessary to explicitly represent the coordinates in the embedding space, and also provides all necessary expressions of energy and forces for efficient computations. Through energy optimization, it naturally leads to the desired anisotropic particle distributions in the original space. The triangles are then generated by computing the Restricted Anisotropic Voronoi Diagram and its dual Delaunay triangulation. We compare our results qualitatively and quantitatively with the state-of-the-art in anisotropic surface meshing on several examples, using the standard measurement criteria.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Counting Particles: a simple and fast surface reconstruction method for particle-based fluids
    Quispe, Filomen Incahuanaco
    Paiva, Afonso
    2022 35TH SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI 2022), 2022, : 145 - 149
  • [32] A decade of particle-based scientific visualization
    Guido Reina
    Patrick Gralka
    Thomas Ertl
    The European Physical Journal Special Topics, 2019, 227 : 1705 - 1723
  • [33] Exploring Particle-Based Caricature Generations
    Phon-Amnuaisuk, Somnuk
    INFORMATICS ENGINEERING AND INFORMATION SCIENCE, PT II, 2011, 252 : 37 - 46
  • [34] Particle-based Cardiac Rhythm Simulation
    Guo, Jiaxiang
    Yang, Cheng
    Han, Jie
    Tang, Jiayu
    Zheng, Mianlun
    Liao, Xiangyun
    Yuan, Zhiyong
    2013 25TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2013, : 2072 - 2075
  • [35] Particle-based fluid simulation on the GPU
    Hegeman, Kyle
    Carr, Nathan A.
    Miller, Gavin S. P.
    COMPUTATIONAL SCIENCE - ICCS 2006, PT 4, PROCEEDINGS, 2006, 3994 : 228 - 235
  • [36] Particle-based mesoscale hydrodynamic techniques
    Noguchi, H.
    Kikuchi, N.
    Gompper, G.
    EPL, 2007, 78 (01)
  • [37] Surface Area Determination of Particle-Based Mesoporous Films Using Krypton Physisorption
    Bjork, Emma M.
    ACS OMEGA, 2024, 9 (05): : 5899 - 5902
  • [38] Particle-Based Dynamic Water Drops with High Surface Tension in Real Time
    Kim, Ki-Hoon
    Lee, Jung
    Kim, Chang-Hun
    Kim, Jong-Hyun
    SYMMETRY-BASEL, 2021, 13 (07):
  • [39] Antifouling Surface Layers for Improved Signal-to-Noise of Particle-Based Immunoassays
    Chen, Annie
    Kozak, Darby
    Battersby, Bronwyn J.
    Forrest, Robin M.
    Scholler, Nathalie
    Urban, Nicole
    Trau, Matt
    LANGMUIR, 2009, 25 (23) : 13510 - 13515
  • [40] Tough Particle-Based Double Network Hydrogels for Functional Solid Surface Coatings
    Takahashi, Riku
    Shimano, Kouichi
    Okazaki, Haruka
    Kurokawa, Takayuki
    Nakajima, Tasuku
    Nonoyama, Takayuki
    King, Daniel R.
    Gong, Jian Ping
    ADVANCED MATERIALS INTERFACES, 2018, 5 (23):