Particle-Based Anisotropic Surface Meshing

被引:70
|
作者
Zhong, Zichun [1 ]
Guo, Xiaohu [1 ]
Wang, Wenping [2 ]
Levy, Bruno [3 ]
Sun, Feng [2 ]
Liu, Yang
Mao, Weihua [4 ]
机构
[1] Univ Texas Dallas, Richardson, TX 75083 USA
[2] Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China
[3] INRIA Nancy Grand Est, Nancy, France
[4] Univ Texas SW Med Ctr Dallas, Dallas, TX USA
来源
ACM TRANSACTIONS ON GRAPHICS | 2013年 / 32卷 / 04期
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
Anisotropic Meshing; Particle; Gaussian Kernel; CENTROIDAL VORONOI TESSELLATIONS; METRIC SPECIFICATIONS; GENERATION;
D O I
10.1145/2461912.2461946
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper introduces a particle-based approach for anisotropic surface meshing. Given an input polygonal mesh endowed with a Riemannian metric and a specified number of vertices, the method generates a metric-adapted mesh. The main idea consists of mapping the anisotropic space into a higher dimensional isotropic one, called "embedding space". The vertices of the mesh are generated by uniformly sampling the surface in this higher dimensional embedding space, and the sampling is further regularized by optimizing an energy function with a quasi-Newton algorithm. All the computations can be re-expressed in terms of the dot product in the embedding space, and the Jacobian matrices of the mappings that connect different spaces. This transform makes it unnecessary to explicitly represent the coordinates in the embedding space, and also provides all necessary expressions of energy and forces for efficient computations. Through energy optimization, it naturally leads to the desired anisotropic particle distributions in the original space. The triangles are then generated by computing the Restricted Anisotropic Voronoi Diagram and its dual Delaunay triangulation. We compare our results qualitatively and quantitatively with the state-of-the-art in anisotropic surface meshing on several examples, using the standard measurement criteria.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] A Unified Anisotropic Particle-Based Ocean Wave Simulation Framework for Marine Simulator Visual System
    Li, Haijiang
    Ren, Hongxiang
    Wang, Chang
    Qiu, Shaoyang
    IEEE ACCESS, 2020, 8 : 126370 - 126384
  • [22] Life-Cycle Evaluation of Anisotropic Particle-Based Magnetorheological Fluid in MR Brake Performance
    Patel, Sachin R.
    Upadhyay, Ramesh V.
    Patel, Dipal M.
    BRAZILIAN JOURNAL OF PHYSICS, 2020, 50 (05) : 525 - 533
  • [23] Stimuli-Responsive Particle-Based Amphiphiles as Active Colloids Prepared by Anisotropic Click Chemistry
    Lanz, Cornelia
    Schloetter, Moritz
    Klinkenberg, Nele
    Besirske, Patricia
    Polarz, Sebastian
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (23) : 8902 - 8906
  • [24] Stimuli-Responsive Particle-Based Amphiphiles as Active Colloids Prepared by Anisotropic Click Chemistry
    Lanz, Cornelia
    Schlötter, Moritz
    Klinkenberg, Nele
    Besirske, Patricia
    Polarz, Sebastian
    Advanced Materials, 2020, 59 (23) : 8987 - 8991
  • [25] Life-Cycle Evaluation of Anisotropic Particle-Based Magnetorheological Fluid in MR Brake Performance
    Sachin R. Patel
    Ramesh V. Upadhyay
    Dipal M. Patel
    Brazilian Journal of Physics, 2020, 50 : 525 - 533
  • [26] Boundary Detection in Particle-based Fluids
    Sandim, Marcos
    Cedrim, Douglas
    Nonato, Luis Gustavo
    Pagliosa, Paulo
    Paiva, Afonso
    COMPUTER GRAPHICS FORUM, 2016, 35 (02) : 215 - 224
  • [27] Surface reconstruction by parallel and unified particle-based resampling from point clouds
    Zhong, Sikai
    Zhong, Zichun
    Hua, Jing
    COMPUTER AIDED GEOMETRIC DESIGN, 2019, 71 : 43 - 62
  • [28] Particle-based platforms for malaria vaccines
    Wu, Yimin
    Narum, David L.
    Fleury, Sylvain
    Jennings, Gary
    Yadava, Anjali
    VACCINE, 2015, 33 (52) : 7518 - 7524
  • [29] Surface reconstruction method for particle-based fluids using discrete indicator functions
    Incahuanaco, Filomen
    Paiva, Afonso
    COMPUTERS & GRAPHICS-UK, 2023, 114 : 26 - 35
  • [30] Multifunctional magnetic particle-based nanocarriers with easily modifiable surface for in vivo transfection
    Yaremenko, A. V.
    Ringaci, A.
    Zvereva, S. D.
    Lifanov, D. A.
    Yaremenko, T. V.
    Tamgin, A. A.
    Cherkasov, V. R.
    Nikitin, M. P.
    INTERNATIONAL CONFERENCE LASER OPTICS 2020 (ICLO 2020), 2020,