TWO-DIMENSIONAL NONLINEAR SCHRODINGER EQUATION WITH RANDOM RADIAL DATA

被引:49
|
作者
Deng, Yu [1 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
来源
ANALYSIS & PDE | 2012年 / 5卷 / 05期
关键词
nonlinear Schrodinger equation; supercritical NLS; random data; Gibbs measure; global well-posedness; GLOBAL WELL-POSEDNESS; DATA CAUCHY-THEORY; INVARIANT-MEASURES;
D O I
10.2140/apde.2012.5.913
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study radial solutions of a certain two-dimensional nonlinear Schrodinger (NLS) equation with harmonic potential, which is supercritical with respect to the initial data. By combining the nonlinear smoothing effect of Schrodinger equation with L-p estimates of Laguerre functions, we are able to prove an almost-sure global well-posedness result and the invariance of the Gibbs measure. We also discuss an application to the NLS equation without harmonic potential.
引用
收藏
页码:913 / 960
页数:48
相关论文
共 50 条
  • [41] Exact solutions of a two-dimensional cubic-quintic discrete nonlinear Schrodinger equation
    Khare, Avinash
    Rasmussen, Kim O.
    Samuelsen, Mogens R.
    Saxena, Avadh
    PHYSICA SCRIPTA, 2011, 84 (06)
  • [42] Nonlinear Schrodinger equation for a two-dimensional plasma: Solitons, breathers, and plane wave stability
    Zabolotnykh, A. A.
    PHYSICAL REVIEW B, 2023, 108 (11)
  • [43] Two-dimensional solitary wave solution to the quadratic-cubic nonlinear Schrodinger equation
    Phibanchon, Sarun
    Rattanachai, Yuttakarn
    XXX IUPAP CONFERENCE ON COMPUTATIONAL PHYSICS, 2019, 1290
  • [44] Alternating direction implicit method for solving two-dimensional cubic nonlinear Schrodinger equation
    Xu, Yiqiang
    Zhang, Luming
    COMPUTER PHYSICS COMMUNICATIONS, 2012, 183 (05) : 1082 - 1093
  • [45] Conservation Laws for Two Dimensional Nonlinear Schrodinger Equation
    Bekova, G. T.
    Shaikhova, G. N.
    Yesmakhanova, K. R.
    Myrzakulov, R.
    SIXTH INTERNATIONAL CONFERENCE NEW TRENDS IN THE APPLICATIONS OF DIFFERENTIAL EQUATIONS IN SCIENCES (NTADES 2019), 2019, 2159
  • [46] THE UNIQUENESS OF TWO-DIMENSIONAL SCHRODINGER-EQUATION RESTORATION
    ANDROSHCHUK, AA
    DOKLADY AKADEMII NAUK SSSR, 1986, 291 (05): : 1033 - 1036
  • [47] Inverse problem for the two-dimensional discrete Schrodinger equation
    Serdyukova, SI
    RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2000, 15 (05) : 455 - 468
  • [48] An optimal control problem for two-dimensional Schrodinger equation
    Yagubov, Gabil
    Toyoglu, Fatma
    Subasi, Murat
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (11) : 6177 - 6187
  • [49] Eigenvalues of the two-dimensional Schrodinger equation with nonseparable potentials
    Taseli, H
    Eid, R
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1996, 59 (03) : 183 - 201
  • [50] Numerical solutions of two-dimensional fractional Schrodinger equation
    A. K. Mittal
    L. K. Balyan
    Mathematical Sciences, 2020, 14 : 129 - 136