TWO-DIMENSIONAL NONLINEAR SCHRODINGER EQUATION WITH RANDOM RADIAL DATA

被引:49
|
作者
Deng, Yu [1 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
来源
ANALYSIS & PDE | 2012年 / 5卷 / 05期
关键词
nonlinear Schrodinger equation; supercritical NLS; random data; Gibbs measure; global well-posedness; GLOBAL WELL-POSEDNESS; DATA CAUCHY-THEORY; INVARIANT-MEASURES;
D O I
10.2140/apde.2012.5.913
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study radial solutions of a certain two-dimensional nonlinear Schrodinger (NLS) equation with harmonic potential, which is supercritical with respect to the initial data. By combining the nonlinear smoothing effect of Schrodinger equation with L-p estimates of Laguerre functions, we are able to prove an almost-sure global well-posedness result and the invariance of the Gibbs measure. We also discuss an application to the NLS equation without harmonic potential.
引用
收藏
页码:913 / 960
页数:48
相关论文
共 50 条
  • [21] Two-dimensional line defect lattice solitons in nonlinear fractional Schrodinger equation
    Wang, Shengyao
    Chen, Weijun
    Liu, Wenjie
    Song, De
    Han, Xueyan
    Wang, Liankai
    Liu, Shuang
    Liu, Mingshan
    OPTICS AND LASER TECHNOLOGY, 2024, 175
  • [22] Stability and oscillations of two-dimensional solitons described by the perturbed nonlinear Schrodinger equation
    Vladimirov, AG
    Rozanov, NN
    OPTICS AND SPECTROSCOPY, 2000, 89 (05) : 731 - 736
  • [23] Multi-Symplectic Splitting Method for Two-Dimensional Nonlinear Schrodinger Equation
    陈亚铭
    朱华君
    宋松和
    CommunicationsinTheoreticalPhysics, 2011, 56 (10) : 617 - 622
  • [24] A conservative difference scheme for two-dimensional nonlinear Schrodinger equation with wave operator
    Hu, Hanzhang
    Chen, Yanping
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2016, 32 (03) : 862 - 876
  • [25] Exact solutions of the two-dimensional discrete nonlinear Schrodinger equation with saturable nonlinearity
    Khare, Avinash
    Rasmussen, Kim O.
    Samuelsen, Mogens R.
    Saxena, Avadh
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (37)
  • [26] Well-posedness of the two-dimensional nonlinear Schrodinger equation with concentrated nonlinearity
    Carlone, Raffaele
    Correggi, Michele
    Tentarelli, Lorenzo
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2019, 36 (01): : 257 - 294
  • [27] Scattering theory below energy space for two-dimensional nonlinear Schrodinger equation
    Miao, Changxing
    Zheng, Jiqiang
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2015, 17 (06)
  • [28] Multi-Symplectic Splitting Method for Two-Dimensional Nonlinear Schrodinger Equation
    Chen Ya-Ming
    Zhu Hua-Jun
    Song Song-He
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 56 (04) : 617 - 622
  • [29] Formation of fundamental solitons in the two-dimensional nonlinear Schrodinger equation with a lattice potential
    Chen, Q. Y.
    Kevrekidis, P. G.
    Malomed, B. A.
    EUROPEAN PHYSICAL JOURNAL D, 2010, 58 (01): : 141 - 146
  • [30] Superconvergence of Finite Element Approximations of the Two-Dimensional Cubic Nonlinear Schrodinger Equation
    Wang, Jianyun
    Tian, Zhikun
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2022, 14 (03) : 652 - 665