Hydride destabilization in core-shell nanoparticles

被引:34
|
作者
Pasquini, L. [1 ]
Sacchi, M. [1 ]
Brighi, M. [1 ]
Boelsma, C. [2 ]
Bals, S. [3 ]
Perkisas, T. [3 ]
Dam, B. [2 ]
机构
[1] Univ Bologna, Dept Phys & Astron, I-40127 Bologna, Italy
[2] Delft Univ Technol, Fac Sci Appl, Dept Chem Engn, NL-2628 BL Delft, Netherlands
[3] Univ Antwerp, EMAT, B-2020 Antwerp, Belgium
关键词
Hydrogen storage; Nanoparticles; Core-shell; Enthalpy; Thermodynamics; Elastic constraint; HYDROGEN-STORAGE; THERMODYNAMICS; CLUSTERS;
D O I
10.1016/j.ijhydene.2013.11.085
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a model that describes the effect of elastic constraint on the thermodynamics of hydrogen absorption and desorption in biphasic core-shell nanoparticles, where the core is a hydride forming metal. In particular, the change of the hydride formation enthalpy and of the equilibrium pressure for the metal/hydride transformation are described as a function of nanoparticles radius, shell thickness, and elastic properties of both core and shell. To test the model, the hydrogen sorption isotherms of Mg-MgO core-shell nanoparticles, synthesized by inert gas condensation, were measured by means of optical hydrogenography. The model's predictions are in good agreement with the experimentally determined plateau pressure of hydrogen absorption. The features that a core-shell systems should exhibit in view of practical hydrogen storage applications are discussed with reference to the model and the experimental results. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:2115 / 2123
页数:9
相关论文
共 50 条
  • [41] Morphological instability of core-shell metallic nanoparticles
    Bochicchio, Davide
    Ferrando, Riccardo
    PHYSICAL REVIEW B, 2013, 87 (16)
  • [42] Tailoring topological states of core-shell nanoparticles
    Martinez-Strasser, Carolina
    Baba, Yuriko
    Diaz-Fernandez, Alvaro
    Dominguez-Adame, Francisco
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2022, 136
  • [43] Hierarchical Porous Core-Shell Carbon Nanoparticles
    Song, Chang
    Du, Jianping
    Zhao, Jianghong
    Feng, Shouai
    Du, Guixiang
    Zhu, Zhenping
    CHEMISTRY OF MATERIALS, 2009, 21 (08) : 1524 - 1530
  • [44] Core-shell polymer nanoparticles for baroplastic processing
    Gonzalez-Leon, JA
    Ryu, SW
    Hewlett, SA
    Ibrahim, SH
    Mayes, AM
    MACROMOLECULES, 2005, 38 (19) : 8036 - 8044
  • [45] Modeling of Growth Morphology of Core-Shell Nanoparticles
    Gorshkov, Vyacheslav
    Kuzmenko, Vasily
    Privman, Vladimir
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (43): : 24959 - 24966
  • [46] Core-shell reactive aluminum nanoparticles with a photodegradable polymer shell
    Patel, Ashish
    Becic, Jasmin
    Buckner, Steven W.
    Jelliss, Paul A.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [47] Mossbauer Studies of Core-Shell Nanoparticles.
    Kalska-Szostko, B.
    Cydzik, M.
    Satula, D.
    Giersig, M.
    ACTA PHYSICA POLONICA A, 2011, 119 (01) : 15 - 17
  • [48] Conductive Core-Shell Nanoparticles: Synthesis and Applications
    Jones, Catarina Franco
    Resina, Leonor
    Ferreira, Frederico Castelo
    Sanjuan-Alberte, Paola
    Esteves, Teresa
    JOURNAL OF PHYSICAL CHEMISTRY C, 2024, : 11083 - 11100
  • [49] Generation of engineered core-shell antibiotic nanoparticles
    Varaprasad, Kokkarachedu
    Yallapu, Murali Mohan
    Nunez, Dariela
    Oyarzun, Patricio
    Lopez, Matias
    Jayaramudu, Tippabattini
    Karthikeyan, Chandrasekaran
    RSC ADVANCES, 2019, 9 (15) : 8326 - 8332
  • [50] Plasmonic enhancement using core-shell nanoparticles
    Stranik, O
    Nooney, R
    McDonagh, C
    MacCraith, BD
    Opto-Ireland 2005: Nanotechnology and Nanophotonics, 2005, 5824 : 79 - 85