Hydride destabilization in core-shell nanoparticles

被引:34
|
作者
Pasquini, L. [1 ]
Sacchi, M. [1 ]
Brighi, M. [1 ]
Boelsma, C. [2 ]
Bals, S. [3 ]
Perkisas, T. [3 ]
Dam, B. [2 ]
机构
[1] Univ Bologna, Dept Phys & Astron, I-40127 Bologna, Italy
[2] Delft Univ Technol, Fac Sci Appl, Dept Chem Engn, NL-2628 BL Delft, Netherlands
[3] Univ Antwerp, EMAT, B-2020 Antwerp, Belgium
关键词
Hydrogen storage; Nanoparticles; Core-shell; Enthalpy; Thermodynamics; Elastic constraint; HYDROGEN-STORAGE; THERMODYNAMICS; CLUSTERS;
D O I
10.1016/j.ijhydene.2013.11.085
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a model that describes the effect of elastic constraint on the thermodynamics of hydrogen absorption and desorption in biphasic core-shell nanoparticles, where the core is a hydride forming metal. In particular, the change of the hydride formation enthalpy and of the equilibrium pressure for the metal/hydride transformation are described as a function of nanoparticles radius, shell thickness, and elastic properties of both core and shell. To test the model, the hydrogen sorption isotherms of Mg-MgO core-shell nanoparticles, synthesized by inert gas condensation, were measured by means of optical hydrogenography. The model's predictions are in good agreement with the experimentally determined plateau pressure of hydrogen absorption. The features that a core-shell systems should exhibit in view of practical hydrogen storage applications are discussed with reference to the model and the experimental results. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:2115 / 2123
页数:9
相关论文
共 50 条
  • [21] Additive Destabilization of Porous Magnesium Borohydride Framework with Core-Shell Structure
    Dun, Chaochao
    Jeong, Sohee
    Liu, Yi-Sheng
    Leick, Noemi
    Mattox, Tracy M.
    Guo, Jinghua
    Lee, Joo-Won
    Gennett, Thomas
    Stavila, Vitalie
    Urban, Jeffrey J.
    Small, 2021, 17 (44):
  • [22] Molecular imprinting of polymeric core-shell nanoparticles
    Moral, NP
    Mayes, AG
    MOLECULARLY IMPRINTED MATERIALS-SENSORS AND OTHER DEVICES, 2002, 723 : 61 - 66
  • [23] Biomedical applications based on core-shell nanoparticles
    Wang, Kemin
    Tan, Weihong
    He, Xiaoxiao
    2005 27TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2005, : 717 - 719
  • [24] FRET Enhancement in Multilayer Core-Shell Nanoparticles
    Lessard-Viger, Mathieu
    Rioux, Maxime
    Rainville, Luc
    Boudreau, Denis
    NANO LETTERS, 2009, 9 (08) : 3066 - 3071
  • [25] Optical limiting characteristics of core-shell nanoparticles
    Vinitha, G.
    Ramalingam, A.
    World Academy of Science, Engineering and Technology, 2010, 40 : 699 - 701
  • [26] The Electrochemical Characterization of Single Core-Shell Nanoparticles
    Holt, Lucy R.
    Plowman, Blake J.
    Young, Neil P.
    Tschulik, Kristina
    Compton, Richard G.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (01) : 397 - 400
  • [27] Magnetism of core-shell Ti:TiO nanoparticles
    Wei, Xiaohui
    Skomski, Ralph
    Balamurugan, B.
    Sellmyer, D. J.
    JOURNAL OF APPLIED PHYSICS, 2010, 107 (09) : 83
  • [28] Core-shell and alloyed bimetallic nanoparticles.
    Zhang, ZY
    Henglein, A
    Shibata, T
    Bunker, B
    Meisel, D
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2001, 222 : U214 - U214
  • [29] Core-shell nanoparticles of tapered interface structure
    Wang, Lin
    Xiong, Wentao
    Wang, Xiaorong
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [30] Magnetic-Plasmonic Core-Shell Nanoparticles
    Levin, Carly S.
    Hofmann, Cristina
    Ali, Tamer A.
    Kelly, Anna T.
    Morosan, Emilia
    Nordlander, Peter
    Whitmire, Kenton H.
    Halas, Naomi J.
    ACS NANO, 2009, 3 (06) : 1379 - 1388