GIS-based spatial modelling of COVID-19 death incidence in Sao Paulo, Brazil

被引:25
|
作者
Urban, Rodrigo Custodio [1 ]
Kondo Nakada, Liane Yuri [2 ]
机构
[1] Pontifical Catholic Univ Campinas PUC Campinas, Postgrad Program Urban Infrastruct Syst, Ctr Exact Environm & Technol Sci, Campinas, Brazil
[2] Univ Campinas FEC Unicamp, Dept Infrastruct & Environm, Campinas, Brazil
关键词
geographically weighted regression model; informal urban settlements; people per household; population density; SARS-CoV-2; Sao Paulo; spatial error model; JEITINHO;
D O I
10.1177/0956247820963962
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Seeking to understand the socio-spatial behaviour of the COVID-19 virus in the most impacted area in Brazil, five spatial regression models were analysed to assess the disease distribution in the affected territory. Results obtained using the Spearman correlation test provided evidence for the correlation between COVID-19 death incidence and social aspects such as population density, average people per household, and informal urban settlements. More importantly, all analysed models using four selected explanatory variables have proven to represent at least 85 per cent of reported deaths at the district level. Overall, our results have demonstrated that the geographically weighted regression (GWR) model best explains the spatial distribution of COVID-19 in the city of Sao Paulo, highlighting the spatial aspects of the data. Spatial analysis has shown the spread of COVID-19 in areas with highly vulnerable populations. Our findings corroborate reports from the recent literature, pointing out the need for special attention in peripheral areas and informal settlements.
引用
收藏
页码:229 / 238
页数:10
相关论文
共 50 条
  • [31] GIS-based spatio-temporal analysis and modeling of COVID-19 incidence rates in Europe
    Kianfar, Nima
    Mesgari, Mohammad Saadi
    SPATIAL AND SPATIO-TEMPORAL EPIDEMIOLOGY, 2022, 41
  • [32] Baseline factors associated with death in a COVID-19 hospital cohort, Sao Paulo, 2020
    Roma de Oliveira Konstantyner, Thais Claudia
    Martins, Camila Bertini
    Luppi, Carla Gianna
    Yashiro, Suely Miyuki
    Pissaia Sanches, Nivia Aparecida
    Cohrs, Frederico Molina
    Ferreira, Paulo Abrao
    Medeiros, Eduardo Alexandrino
    REVISTA DE SAUDE PUBLICA, 2021, 55
  • [33] GIS-based geospatial analysis of COVID-19 in southern India
    Islam, Zubairul
    INTERNATIONAL JOURNAL OF CARTOGRAPHY, 2025, 11 (01) : 138 - 153
  • [34] Higher risk of death from COVID-19 in low-income and non-White populations of SAo Paulo, Brazil
    Li, Sabrina L.
    Pereira, Rafael H. M.
    Prete Jr, Carlos A.
    Zarebski, Alexander E.
    Emanuel, Lucas
    Alves, Pedro J. H.
    Peixoto, Pedro S.
    Braga, Carlos K., V
    de Souza Santos, Andreza Aruska
    de Souza, William M.
    Barbosa, Rogerio J.
    Buss, Lewis F.
    Mendrone, Alfredo
    de Almeida-Neto, Cesar
    Ferreira, Suzete C.
    Salles, Nanci A.
    Marcilio, Izabel
    Wu, Chieh-Hsi
    Gouveia, Nelson
    Nascimento, Vitor H.
    Sabino, Ester C.
    Faria, Nuno R.
    Messina, Jane P.
    BMJ GLOBAL HEALTH, 2021, 6 (04):
  • [35] Spatial analysis of COVID-19 incidence and the sociodemographic context in Brazil
    Raymundo, Carlos Eduardo
    Oliveira, Marcella Cini
    Eleuterio, Tatiana de Araujo
    Andre, Suzana Rosa
    da Silva, Marcele Goncalves
    Queiroz, Eny Regina da Silva
    Medronho, Roberto de Andrade
    PLOS ONE, 2021, 16 (03):
  • [36] COVID-19 crisis monitor: assessing the effectiveness of exit strategies in the State of Sao Paulo, Brazil
    Haddad, Eduardo A.
    Vieira, Renato S.
    Araujo, Inacio F.
    Ichihara, Silvio M.
    Perobelli, Fernando S.
    Bugarin, Karina S. S.
    ANNALS OF REGIONAL SCIENCE, 2022, 68 (02): : 501 - 525
  • [37] Cutaneous manifestations of COVID-19 patients in a Hospital in Sao Paulo, Brazil, and global literature review
    Cestari, Silmara da Costa Pereira
    Cestari, Marcela da Costa Pereira
    Marques, Gabriela Franco
    Lirio, Ivana
    Tovo, Reinaldo
    Labriola, Ilana Cruz Silva
    ANAIS BRASILEIROS DE DERMATOLOGIA, 2023, 98 (04) : 466 - 471
  • [38] A multipurpose machine learning approach to predict COVID-19 negative prognosis in SAo Paulo, Brazil
    Fernandes, Fernando Timoteo
    de Oliveira, Tiago Almeida
    Teixeira, Cristiane Esteves
    de Moraes Batista, Andre Filipe
    Dalla Costa, Gabriel
    Porto Chiavegatto Filho, Alexandre Dias
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [39] The use of health geography modeling to understand early dispersion of COVID-19 in Sao Paulo, Brazil
    Fortaleza, Carlos Magno Castelo Branco
    Guimaraes, Raul Borges
    Catao, Rafael de Castro
    Ferreira, Claudia Pio
    Berg de Almeida, Gabriel
    Nogueira Vilches, Thomas
    Pugliesi, Edmur
    PLOS ONE, 2021, 16 (01):
  • [40] Factors associated with COVID-19 mortality in municipalities in the state of Sao Paulo (Brazil): an ecological study
    de Souza, Rafaela Caroline
    Mai Almeida, Ettore Rafael
    Castelo Branco Fortaleza, Carlos Magno
    Miot, Helio Amante
    REVISTA DA SOCIEDADE BRASILEIRA DE MEDICINA TROPICAL, 2022, 55