A multipurpose machine learning approach to predict COVID-19 negative prognosis in SAo Paulo, Brazil

被引:44
|
作者
Fernandes, Fernando Timoteo [1 ,2 ]
de Oliveira, Tiago Almeida [1 ,3 ]
Teixeira, Cristiane Esteves [1 ,4 ]
de Moraes Batista, Andre Filipe [1 ]
Dalla Costa, Gabriel [5 ]
Porto Chiavegatto Filho, Alexandre Dias [1 ]
机构
[1] Univ Sao Paulo, Sch Publ Hlth, Sao Paulo, SP, Brazil
[2] Fundacentro, Sao Paulo, SP, Brazil
[3] Paraiba State Univ, Stat Dept, Campina Grande, Paraiba, Brazil
[4] Brazilian Natl Canc Inst, Bioinformat & Computat Biol Lab, Rio De Janeiro, RJ, Brazil
[5] BP Beneficencia Portuguesa Sao Paulo, Sao Paulo, SP, Brazil
关键词
INCOME;
D O I
10.1038/s41598-021-82885-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The new coronavirus disease (COVID-19) is a challenge for clinical decision-making and the effective allocation of healthcare resources. An accurate prognostic assessment is necessary to improve survival of patients, especially in developing countries. This study proposes to predict the risk of developing critical conditions in COVID-19 patients by training multipurpose algorithms. We followed a total of 1040 patients with a positive RT-PCR diagnosis for COVID-19 from a large hospital from SAo Paulo, Brazil, from March to June 2020, of which 288 (28%) presented a severe prognosis, i.e. Intensive Care Unit (ICU) admission, use of mechanical ventilation or death. We used routinely-collected laboratory, clinical and demographic data to train five machine learning algorithms (artificial neural networks, extra trees, random forests, catboost, and extreme gradient boosting). We used a random sample of 70% of patients to train the algorithms and 30% were left for performance assessment, simulating new unseen data. In order to assess if the algorithms could capture general severe prognostic patterns, each model was trained by combining two out of three outcomes to predict the other. All algorithms presented very high predictive performance (average AUROC of 0.92, sensitivity of 0.92, and specificity of 0.82). The three most important variables for the multipurpose algorithms were ratio of lymphocyte per C-reactive protein, C-reactive protein and Braden Scale. The results highlight the possibility that machine learning algorithms are able to predict unspecific negative COVID-19 outcomes from routinely-collected data.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] A multipurpose machine learning approach to predict COVID-19 negative prognosis in São Paulo, Brazil
    Fernando Timoteo Fernandes
    Tiago Almeida de Oliveira
    Cristiane Esteves Teixeira
    Andre Filipe de Moraes Batista
    Gabriel Dalla Costa
    Alexandre Dias Porto Chiavegatto Filho
    Scientific Reports, 11
  • [2] The Impact of Covid-19 in Hospitality in the City of Sao Paulo [Brazil]
    Mazo, Alex Mauricio
    Goncalves De Oliveira, Paulo Sergio
    Wada, Elizabeth Kyoko
    ROSA DOS VENTOS-TURISMO E HOSPITALIDADE, 2021, 13 (04)
  • [3] The Impact of COVID-19 on Urban Agriculture in Sao Paulo, Brazil
    Biazoti, Andre Ruoppolo
    Nakamura, Angelica Campos
    Nagib, Gustavo
    Leao, Vitoria Oliveira Pereira de Souza
    Giacche, Giulia
    Mauad, Thais
    SUSTAINABILITY, 2021, 13 (11)
  • [4] Machine Learning to predict tuberculosis in cattle from the state of Sao Paulo, Brazil
    Pereira, L. E. C.
    Ferraudo, A. S.
    Panosso, A. R.
    Carvalho, A. A. B.
    Mathias, L. A.
    Saches, A. C.
    Hellwig, K. S.
    Ancencio, R. A.
    EUROPEAN JOURNAL OF PUBLIC HEALTH, 2020, 30
  • [5] Towards Providing Effective Data-Driven Responses to Predict the Covid-19 in Sao Paulo and Brazil
    Amaral, Fabio
    Casaca, Wallace
    Oishi, Cassio M.
    Cuminato, Jose A.
    SENSORS, 2021, 21 (02) : 1 - 25
  • [6] Investigating spatiotemporal patterns of the Covid-19 in Sao Paulo State, Brazil
    Alcantara, Enner
    Mantovani, Jose
    Rotta, Luiz
    Park, Edward
    Rodrigues, Thanan
    Carvalho, Fernando Campos
    Souza Filho, Carlos Roberto
    GEOSPATIAL HEALTH, 2020, 15 (02) : 201 - 209
  • [7] Social inequalities and COVID-19 mortality in the city of Sao Paulo, Brazil
    Ribeiro, Karina Braga
    Ribeiro, Ana Freitas
    de Sousa Mascena Veras, Maria Amelia
    de Castro, Marcia Caldas
    INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2021, 50 (03) : 732 - 742
  • [8] The COVID-19 outbreak on dental practice in State of Sao Paulo, Brazil
    Lima, Thamires Diogo
    Pelozo, Lais Lima
    Milori Corona, Silmara Aparecida
    Miranda, Claudio Souza
    Souza-Gabriel, Aline Evangelista
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH, 2022, 32 (12) : 2810 - 2819
  • [9] Two hundred days of COVID-19 in Sao Paulo State, Brazil
    de Almeida, Gabriel Berg
    Pronunciate, Micheli
    Grotto, Rejane Maria Tommasini
    Azevedo Pugliesi, Edmur
    Guimaraes, Raul Borges
    Vilches, Thomas Nogueira
    Mendes Coutinho, Renato
    Catao, Rafael de Castro
    Ferreira, Claudia Pio
    Fortaleza, Carlos Magno Castelo Branco
    EPIDEMIOLOGY AND INFECTION, 2020, 148
  • [10] Visual analytics of COVID-19 dissemination in Sao Paulo state, Brazil
    Marcilio-Jr, Wilson E.
    Eler, Danilo M.
    Garcia, Rogerio E.
    Correia, Ronaldo C. M.
    Rodrigues, Rafael M. B.
    JOURNAL OF BIOMEDICAL INFORMATICS, 2021, 117 (117)