A multipurpose machine learning approach to predict COVID-19 negative prognosis in SAo Paulo, Brazil

被引:44
|
作者
Fernandes, Fernando Timoteo [1 ,2 ]
de Oliveira, Tiago Almeida [1 ,3 ]
Teixeira, Cristiane Esteves [1 ,4 ]
de Moraes Batista, Andre Filipe [1 ]
Dalla Costa, Gabriel [5 ]
Porto Chiavegatto Filho, Alexandre Dias [1 ]
机构
[1] Univ Sao Paulo, Sch Publ Hlth, Sao Paulo, SP, Brazil
[2] Fundacentro, Sao Paulo, SP, Brazil
[3] Paraiba State Univ, Stat Dept, Campina Grande, Paraiba, Brazil
[4] Brazilian Natl Canc Inst, Bioinformat & Computat Biol Lab, Rio De Janeiro, RJ, Brazil
[5] BP Beneficencia Portuguesa Sao Paulo, Sao Paulo, SP, Brazil
关键词
INCOME;
D O I
10.1038/s41598-021-82885-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The new coronavirus disease (COVID-19) is a challenge for clinical decision-making and the effective allocation of healthcare resources. An accurate prognostic assessment is necessary to improve survival of patients, especially in developing countries. This study proposes to predict the risk of developing critical conditions in COVID-19 patients by training multipurpose algorithms. We followed a total of 1040 patients with a positive RT-PCR diagnosis for COVID-19 from a large hospital from SAo Paulo, Brazil, from March to June 2020, of which 288 (28%) presented a severe prognosis, i.e. Intensive Care Unit (ICU) admission, use of mechanical ventilation or death. We used routinely-collected laboratory, clinical and demographic data to train five machine learning algorithms (artificial neural networks, extra trees, random forests, catboost, and extreme gradient boosting). We used a random sample of 70% of patients to train the algorithms and 30% were left for performance assessment, simulating new unseen data. In order to assess if the algorithms could capture general severe prognostic patterns, each model was trained by combining two out of three outcomes to predict the other. All algorithms presented very high predictive performance (average AUROC of 0.92, sensitivity of 0.92, and specificity of 0.82). The three most important variables for the multipurpose algorithms were ratio of lymphocyte per C-reactive protein, C-reactive protein and Braden Scale. The results highlight the possibility that machine learning algorithms are able to predict unspecific negative COVID-19 outcomes from routinely-collected data.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Ninety-day outcomes in patients diagnosed with COVID-19 in Sao Paulo, Brazil: a cohort study
    Lins Fumis, Renata Rego
    Vieira Costa, Eduardo Leite
    Tomazini, Bruno Martins
    Taniguchi, Leandro Utino
    Costa, Livia do Valle
    Morinaga, Christian Valle
    de Sousa e Sa, Marcia Martiniano
    Pontes de Azevedo, Luciano Cesar
    Nascimento, Teresa Cristina
    Ledo, Carla Bernardes
    de Oliveira, Maura Salaroli
    Cardoso, Luiz Francisco
    Pastore Junior, Laerte
    Vieira Junior, Jose Mauro
    JORNAL BRASILEIRO DE PNEUMOLOGIA, 2023, 49 (03)
  • [42] Panorama of COVID-19, risk perception and vaccine confidence in Sao Paulo State population, Southeast Brazil
    Zucoloto, Miriane Lucindo
    Meneghini, Andrea Cristina
    Martinez, Edson Zangiacomi
    HEALTH & SOCIAL CARE IN THE COMMUNITY, 2022, 30 (06) : E4662 - E4672
  • [43] Modelling the test, trace and quarantine strategy to control the COVID-19 epidemic in the state of Sao Paulo, Brazil
    Amaku, Marcos
    Covas, Dimas Tadeu
    Bezerra Coutinho, Francisco Antonio
    Azevedo Neto, Raymundo Soares
    Struchiner, Claudio
    Wilder-Smith, Annelies
    Massad, Eduardo
    INFECTIOUS DISEASE MODELLING, 2021, 6 : 46 - 55
  • [44] Piecewise Modeling the Accumulated Daily Growth of COVID-19 Deaths: The Case of the State of Sao Paulo, Brazil
    Saraiva, Erlandson Ferreira
    de Braganca Pereira, Carlos Alberto
    ENTROPY, 2021, 23 (08)
  • [45] Excess mortality by specific causes of deaths in the city of SAo Paulo, Brazil, during the COVID-19 pandemic
    Fernandes, Gisele Aparecida
    Nassar Junior, Antonio Paulo
    Azevedo e Silva, Gulnar
    Feriani, Diego
    Franca e Silva, Ivan Leonardo Avelino
    Caruso, Pedro
    Curado, Maria Paula
    PLOS ONE, 2021, 16 (06):
  • [46] Psychological Impact of the COVID-19 Pandemic on Dentists in Latin America's Epicenter: Sao Paulo, Brazil
    Rodrigues de Araujo, Carlos Ariel
    Ribeiro, Danielle Viana
    de Oliveira, Danielle Boina
    Barbieri, Wander
    de Castilho, Gabriela Silva
    Jimenez, Manuel
    Tedesco, Tamara Kerber
    Jordao, Maisa Camillo
    Novaes, Tatiane Fernandes
    Palacio, Danielle da Costa
    Heller, Debora
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2022, 19 (22)
  • [47] COVID-19 Seroepidemiological Survey among Healthcare Workers in the City of Ribeirao Preto, Sao Paulo, Brazil
    Evora, Patricia Martinez
    Siqueira, Andre Machado
    Stabeli, Rodrigo Guerino
    REVISTA DA SOCIEDADE BRASILEIRA DE MEDICINA TROPICAL, 2022, 55 : e0088
  • [48] COVID-19 pandemic impact on dentists in Latin America's epicenter: SAo-Paulo, Brazil
    Novaes, Tatiane Fernandes
    Jordao, Maisa Camillo
    Bonacina, Carlos Felipe
    Veronezi, Andre Oswaldo
    Rodrigues de Araujo, Carlos Ariel
    Olegario, Isabel Cristina
    de Oliveira, Daniele Boina
    Ushakova, Veranika
    Birbrair, Alexander
    Palacio, Danielle da Costa
    Heller, Debora
    PLOS ONE, 2021, 16 (08):
  • [49] COVID-19: Has social isolation reduced the emission of pollutants in the megacity of Sao Paulo-Brazil?
    Noda, Lumy
    Nobrega, Ana Beatriz E. Q.
    da Silva Junior, Joao B. M.
    Schmidlin, Flavio
    Labaki, Lucila
    ENVIRONMENT DEVELOPMENT AND SUSTAINABILITY, 2021, 23 (08) : 12233 - 12251
  • [50] COVID-19 and HIV/AIDS in a cohort study in Sao Paulo, Brazil: outcomes and disparities by race and schooling
    Rocha, S. Q.
    Avelino-Silva, V. I.
    Tancredi, M. V.
    Jamal, L. F.
    Ferreira, P. R. A.
    Tayra, A.
    Ferreira, P. M.
    Carvalhanas, T.
    Domingues, C. S. B.
    Souza, R. A.
    Gianna, M. C.
    Kalichman, A. O.
    Leite, O. H. M.
    Souza, T. N. L.
    Costa, D. A.
    Furtado, J. J. D.
    Costa, A. F.
    AIDS CARE-PSYCHOLOGICAL AND SOCIO-MEDICAL ASPECTS OF AIDS/HIV, 2022, 34 (07): : 832 - 838