Path-based similarity with instance-level constraints for SemiBoost

被引:0
|
作者
Zhang, Xiangrong [1 ]
Yu, Jianshen [1 ]
Wang, Ting [1 ]
Hou, Biao [1 ]
Jiao, L. C. [1 ]
机构
[1] Xidian Univ, Key Lab Intelligent Percept & Image Understanding, Minist Educ, Xian 710071, Peoples R China
关键词
SemiBoost; path-based similarity; pairwise constraints; SAR-ATR;
D O I
10.1117/12.2031773
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a novel classification method path-based similarity with instance-level constrains for SemiBoost, PBS-SB in short is proposed, and we exploit it for synthetic aperture radar automatic target recognition (SAR-ATR). Different from traditional SemiBoost method that uses the Gaussian kernel similarity, PBS-SB utilizes the path-based similarity, which considers the global consistence of data clusters. Besides, the instance-level constraints are integrated into the similarity measurement to construct the semi-supervised similarity, which provides the local consistence information. The experiments on 5 different data sets and MSTAR (Moving and Stationary Target Acquisition and Recognition) database demonstrate that the proposed method has superior classification performance with respect to competitive methods.
引用
收藏
页数:8
相关论文
共 50 条
  • [11] On a New Evidential C-Means Algorithm with Instance-Level Constraints
    Xie, Jiarui
    Antoine, Violaine
    SCALABLE UNCERTAINTY MANAGEMENT, SUM 2019, 2019, 11940 : 66 - 78
  • [12] Semi-Supervised Affinity Propagation with Soft Instance-Level Constraints
    Arzeno, Natalia M.
    Vikalo, Haris
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (05) : 1041 - 1052
  • [13] Instance-Level Microtubule Tracking
    Masoudi, Samira
    Razi, Afsaneh
    Wright, Cameron H. G.
    Gatlin, Jesse C.
    Bagci, Ulas
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (06) : 2061 - 2075
  • [14] Instance-Level Meta Normalization
    Jia, Songhao
    Chen, Ding-Jie
    Chen, Hwann-Tzong
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 4860 - 4868
  • [15] AMES: Asymmetric and Memory-Efficient Similarity Estimation for Instance-Level Retrieval
    Suma, Pavel
    Kordopatis-Zilos, Giorgos
    Iscen, Ahmet
    Tolias, Giorgos
    COMPUTER VISION - ECCV 2024, PT LIX, 2025, 15117 : 307 - 325
  • [16] Set-Based Boosting for Instance-level Transfer
    Eaton, Eric
    desJardins, Marie
    2009 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2009), 2009, : 422 - +
  • [17] Active Learning of Instance-level Constraints for Semi-supervised Document Clustering
    Zhao, Weizhong
    He, Qing
    Ma, Huifang
    Shi, Zhongzhi
    2009 IEEE/WIC/ACM INTERNATIONAL JOINT CONFERENCES ON WEB INTELLIGENCE (WI) AND INTELLIGENT AGENT TECHNOLOGIES (IAT), VOL 1, 2009, : 264 - 268
  • [18] Instance-level Context Attention Network for instance segmentation
    Shang, Chao
    Li, Hongliang
    Meng, Fanman
    Qiu, Heqian
    Wu, Qingbo
    Xu, Linfeng
    Ngan, King Ngi
    NEUROCOMPUTING, 2022, 472 : 124 - 137
  • [19] Contextual Instance Decoupling for Instance-Level Human Analysis
    Wang, Dongkai
    Zhang, Shiliang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (08) : 9520 - 9533
  • [20] Using instance-level constraints in agglomerative hierarchical clustering: theoretical and empirical results
    Ian Davidson
    S. S. Ravi
    Data Mining and Knowledge Discovery, 2009, 18 : 257 - 282