Using instance-level constraints in agglomerative hierarchical clustering: theoretical and empirical results

被引:0
|
作者
Ian Davidson
S. S. Ravi
机构
[1] The University of California - Davis,Department of Computer Science
[2] University at Albany - State University of New York,Department of Computer Science
来源
关键词
Clustering; Constrained clustering; Semi-supervised learning;
D O I
暂无
中图分类号
学科分类号
摘要
Clustering with constraints is a powerful method that allows users to specify background knowledge and the expected cluster properties. Significant work has explored the incorporation of instance-level constraints into non-hierarchical clustering but not into hierarchical clustering algorithms. In this paper we present a formal complexity analysis of the problem and show that constraints can be used to not only improve the quality of the resultant dendrogram but also the efficiency of the algorithms. This is particularly important since many agglomerative style algorithms have running times that are quadratic (or faster growing) functions of the number of instances to be clustered. We present several bounds on the improvement in the running times of algorithms obtainable using constraints.
引用
收藏
页码:257 / 282
页数:25
相关论文
共 50 条
  • [1] Using instance-level constraints in agglomerative hierarchical clustering: theoretical and empirical results
    Davidson, Ian
    Ravi, S. S.
    DATA MINING AND KNOWLEDGE DISCOVERY, 2009, 18 (02) : 257 - 282
  • [2] Agglomerative hierarchical clustering with constraints: Theoretical and empirical results
    Davidson, I
    Ravi, SS
    KNOWLEDGE DISCOVERY IN DATABASES: PKDD 2005, 2005, 3721 : 59 - 70
  • [3] CEVCLUS: evidential clustering with instance-level constraints for relational data
    V. Antoine
    B. Quost
    M.-H. Masson
    T. Denoeux
    Soft Computing, 2014, 18 : 1321 - 1335
  • [4] Expert-driven trace clustering with instance-level constraints
    De Koninck, Pieter
    Nelissen, Klaas
    vanden Broucke, Seppe
    Baesens, Bart
    Snoeck, Monique
    De Weerdt, Jochen
    KNOWLEDGE AND INFORMATION SYSTEMS, 2021, 63 (05) : 1197 - 1220
  • [5] Fuzzy Clustering and Aggregation of Relational Data With Instance-Level Constraints
    Frigui, Hichem
    Hwang, Cheul
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2008, 16 (06) : 1565 - 1581
  • [6] Expert-driven trace clustering with instance-level constraints
    Pieter De Koninck
    Klaas Nelissen
    Seppe vanden Broucke
    Bart Baesens
    Monique Snoeck
    Jochen De Weerdt
    Knowledge and Information Systems, 2021, 63 : 1197 - 1220
  • [7] CEVCLUS: evidential clustering with instance-level constraints for relational data
    Antoine, V.
    Quost, B.
    Masson, M. -H.
    Denoeux, T.
    SOFT COMPUTING, 2014, 18 (07) : 1321 - 1335
  • [8] Semi-supervised clustering and feature discrimination with instance-level constraints
    Frigui, Hichem
    Mahdi, Rami
    2007 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-4, 2007, : 1720 - 1725
  • [9] Hierarchical Agglomerative Clustering with Ordering Constraints
    Zhao, Haifeng
    Qi, ZiJie
    THIRD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING: WKDD 2010, PROCEEDINGS, 2010, : 195 - 199
  • [10] Active Learning of Instance-level Constraints for Semi-supervised Document Clustering
    Zhao, Weizhong
    He, Qing
    Ma, Huifang
    Shi, Zhongzhi
    2009 IEEE/WIC/ACM INTERNATIONAL JOINT CONFERENCES ON WEB INTELLIGENCE (WI) AND INTELLIGENT AGENT TECHNOLOGIES (IAT), VOL 1, 2009, : 264 - 268