Establishment and Validation of a Machine Learning Prediction Model Based on Big Data for Predicting the Risk of Bone Metastasis in Renal Cell Carcinoma Patients

被引:5
|
作者
Xu, Chan [1 ,2 ]
Liu, Wencai [3 ]
Yin, Chengliang [4 ]
Li, Wanying [2 ]
Liu, Jingjing [5 ]
Sheng, Wanli [6 ]
Tang, Haotong [4 ]
Li, Wenle [7 ]
Zhang, Qingqing [8 ]
机构
[1] Xianyang Cent Hosp, Dept Dermatol, Xianyang 712000, Peoples R China
[2] Xianyang Cent Hosp, Dept Clin Med Res Ctr, Xianyang 712000, Peoples R China
[3] Nanchang Univ, Affiliated Hosp 1, Dept Orthopaed Surg, Nanchang 330006, Peoples R China
[4] Macau Univ Sci & Technol, Fac Med, Macau 999078, Peoples R China
[5] Natl Engn Res Ctr Biochip, Dept Shanghai, Shanghai 201203, Peoples R China
[6] Hohhot Tech Ctr Hohhot Customs Dist, Hohhot 010020, Peoples R China
[7] Xiamen Univ, Mol Imaging & Translat Med Res Ctr, State Key Lab Mol Vaccinol & Mol Diagnost, Xiamen 361005, Peoples R China
[8] Xi An Jiao Tong Univ, Affiliated Hosp 2, Dept Otolaryngol Head & Neck Surg, Xian 710004, Peoples R China
关键词
CANCER; COMPLICATIONS; SURVIVAL;
D O I
10.1155/2022/5676570
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Purpose. Since the prognosis of renal cell carcinoma (RCC) patients with bone metastasis (BM) is poor, this study is aimed at using big data to build a machine learning (ML) model to predict the risk of BM in RCC patients. Methods. A retrospective study was conducted on 40,355 RCC patients in the SEER database from 2010 to 2017. LASSO regression and multivariate logistic regression analysis was performed to determine independent risk factors of RCC-BM. Six ML algorithm models, including LR, GBM, XGB, RF, DT, and NBC, were used to establish risk models for predicting RCC-BM. The prediction performance of ML models was weighed by 10-fold cross-validation. Results. The study investigated 40,355 patients diagnosed with RCC in the SEER database, where 1,811 (4.5%) were BM patients. Independent risk factors for BM were tumor grade, T stage, N stage, liver metastasis, lung metastasis, and brain metastasis. Among the RCC-BM risk prediction models established by six ML algorithms, the XGB model showed the best prediction performance (AUC=0.891). Therefore, a network calculator based on the XGB model was established to individually assess the risk of BM in patients with RCC. Conclusion. The XGB risk prediction model based on the ML algorithm performed a good prediction effect on BM in RCC patients.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Identification of a novel biomarker signature associated with risk for bone metastasis in patients with renal cell carcinoma
    Paule, Bernard
    Deslandes, Emmanuelle
    Le Mouel, Stephane E.
    Bastien, Laurence
    Podgorniak, Marie-Pierre
    Allory, Yves
    de la Taille, Alexandre
    Menashi, Suzanne
    Calvo, Fabien
    Mourah, Samia
    INTERNATIONAL JOURNAL OF BIOLOGICAL MARKERS, 2010, 25 (02): : 112 - 115
  • [42] Establishment of a model for predicting preterm birth based on the machine learning algorithm
    Yao Zhang
    Sisi Du
    Tingting Hu
    Shichao Xu
    Hongmei Lu
    Chunyan Xu
    Jufang Li
    Xiaoling Zhu
    BMC Pregnancy and Childbirth, 23
  • [43] Establishment of a model for predicting preterm birth based on the machine learning algorithm
    Zhang, Yao
    Du, Sisi
    Hu, Tingting
    Xu, Shichao
    Lu, Hongmei
    Xu, Chunyan
    Li, Jufang
    Zhu, Xiaoling
    BMC PREGNANCY AND CHILDBIRTH, 2023, 23 (01)
  • [44] Establishment of noninvasive diabetes risk prediction model based on tongue features and machine learning techniques
    Li, Jun
    Chen, Qingguang
    Hu, Xiaojuan
    Yuan, Pei
    Cui, Longtao
    Tu, Liping
    Cui, Ji
    Huang, Jingbin
    Jiang, Tao
    Ma, Xuxiang
    Yao, Xinghua
    Zhou, Changle
    Lu, Hao
    Xu, Jiatuo
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2021, 149
  • [45] Establishment and validation of a prognostic nomogram for patients with renal cell carcinoma based on SEER and TCGA database
    Wang, Changming
    Wu, Baorui
    Shen, Deyun
    Zhang, Bin
    Wang, Lei
    Xiao, Jun
    TRANSLATIONAL CANCER RESEARCH, 2023, 12 (06) : 1411 - +
  • [46] Risk Assessment Model of Information Base Based on Machine Learning in Big Data Environment
    He, Dingjun
    International Journal of Network Security, 2024, 26 (06) : 1004 - 1014
  • [47] Establishment and validation of multiclassification prediction models for pulmonary nodules based on machine learning
    Liu, Qiao
    Lv, Xue
    Zhou, Daiquan
    Yu, Na
    Hong, Yuqin
    Zeng, Yan
    CLINICAL RESPIRATORY JOURNAL, 2024, 18 (05):
  • [48] Characterization of a renal cell carcinoma cell line derived from a human bone metastasis and establishment of an experimental nude mouse model
    Weber, KL
    Pathak, S
    Multani, AS
    Price, JE
    JOURNAL OF UROLOGY, 2002, 168 (02): : 774 - 779
  • [49] Development and External Validation of a Machine Learning Model for Prediction of Lymph Node Metastasis in Patients with Prostate Cancer
    Sabbagh, Ali
    Washington, Samuel L.
    Tilki, Derya
    Hong, Julian C.
    Feng, Jean
    Valdes, Gilmer
    Chen, Ming-Hui
    Wu, Jing
    Huland, Hartwig
    Graefen, Markus
    Wiegel, Thomas
    Boehmer, Dirk
    Cowan, Janet E.
    Cooperberg, Matthew
    Feng, Felix Y.
    Roach, Mack
    Trock, Bruce J.
    Partin, Alan W.
    V. D'Amico, Anthony
    Carroll, Peter R.
    Mohamad, Osama
    EUROPEAN UROLOGY ONCOLOGY, 2023, 6 (05): : 501 - 507
  • [50] Machine Learning Model for Predicting CVD Risk on NHANES Data
    Klados, G. A.
    Politof, K.
    Bei, E. S.
    Moirogiorgou, K.
    Anousakis-Vlachochristou, N.
    Matsopoulos, G. K.
    Zervakis, M.
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 1749 - 1752