Establishment and Validation of a Machine Learning Prediction Model Based on Big Data for Predicting the Risk of Bone Metastasis in Renal Cell Carcinoma Patients

被引:5
|
作者
Xu, Chan [1 ,2 ]
Liu, Wencai [3 ]
Yin, Chengliang [4 ]
Li, Wanying [2 ]
Liu, Jingjing [5 ]
Sheng, Wanli [6 ]
Tang, Haotong [4 ]
Li, Wenle [7 ]
Zhang, Qingqing [8 ]
机构
[1] Xianyang Cent Hosp, Dept Dermatol, Xianyang 712000, Peoples R China
[2] Xianyang Cent Hosp, Dept Clin Med Res Ctr, Xianyang 712000, Peoples R China
[3] Nanchang Univ, Affiliated Hosp 1, Dept Orthopaed Surg, Nanchang 330006, Peoples R China
[4] Macau Univ Sci & Technol, Fac Med, Macau 999078, Peoples R China
[5] Natl Engn Res Ctr Biochip, Dept Shanghai, Shanghai 201203, Peoples R China
[6] Hohhot Tech Ctr Hohhot Customs Dist, Hohhot 010020, Peoples R China
[7] Xiamen Univ, Mol Imaging & Translat Med Res Ctr, State Key Lab Mol Vaccinol & Mol Diagnost, Xiamen 361005, Peoples R China
[8] Xi An Jiao Tong Univ, Affiliated Hosp 2, Dept Otolaryngol Head & Neck Surg, Xian 710004, Peoples R China
关键词
CANCER; COMPLICATIONS; SURVIVAL;
D O I
10.1155/2022/5676570
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Purpose. Since the prognosis of renal cell carcinoma (RCC) patients with bone metastasis (BM) is poor, this study is aimed at using big data to build a machine learning (ML) model to predict the risk of BM in RCC patients. Methods. A retrospective study was conducted on 40,355 RCC patients in the SEER database from 2010 to 2017. LASSO regression and multivariate logistic regression analysis was performed to determine independent risk factors of RCC-BM. Six ML algorithm models, including LR, GBM, XGB, RF, DT, and NBC, were used to establish risk models for predicting RCC-BM. The prediction performance of ML models was weighed by 10-fold cross-validation. Results. The study investigated 40,355 patients diagnosed with RCC in the SEER database, where 1,811 (4.5%) were BM patients. Independent risk factors for BM were tumor grade, T stage, N stage, liver metastasis, lung metastasis, and brain metastasis. Among the RCC-BM risk prediction models established by six ML algorithms, the XGB model showed the best prediction performance (AUC=0.891). Therefore, a network calculator based on the XGB model was established to individually assess the risk of BM in patients with RCC. Conclusion. The XGB risk prediction model based on the ML algorithm performed a good prediction effect on BM in RCC patients.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] A predicting model for properties of steel using the industrial big data based on machine learning
    Guo, Shun
    Yu, Jinxin
    Liu, Xingjun
    Wang, Cuiping
    Jiang, Qingshan
    COMPUTATIONAL MATERIALS SCIENCE, 2019, 160 : 95 - 104
  • [22] Establishment and validation of a predictive model for the risk and prognosis of bone metastasis in breast cancer: Research based on provincial hospital data in China
    Miao, L.
    Zhang, X. F.
    ANNALS OF ONCOLOGY, 2024, 35 : S1423 - S1424
  • [23] Establishment and Validation of a Machine Learning-Based Prediction Model for Termination of via Cesarean Section
    Zhang, Rui
    Sheng, Weixuan
    Liu, Feiran
    Zhang, Jin
    Bai, Wenpei
    INTERNATIONAL JOURNAL OF GENERAL MEDICINE, 2023, 16 : 5567 - 5578
  • [24] Risk prediction model based on machine learning for predicting miscarriage among pregnant patients with immune abnormalities
    Wu, Yue
    Yu, Xixuan
    Li, Mengting
    Zhu, Jing
    Yue, Jun
    Wang, Yan
    Man, Yicun
    Zhou, Chao
    Tong, Rongsheng
    Wu, Xingwei
    FRONTIERS IN PHARMACOLOGY, 2024, 15
  • [25] Derivation and validation of a machine learning-based risk prediction model in patients with acute heart failure
    Misumi, Kayo
    Matsue, Yuya
    Nogi, Kazutaka
    Fujimoto, Yudai
    Kagiyama, Nobuyuki
    Kasai, Takatoshi
    Kitai, Takeshi
    Oishi, Shogo
    Akiyama, Eiichi
    Suzuki, Satoshi
    Yamamoto, Masayoshi
    Kida, Keisuke
    Okumura, Takahiro
    Nogi, Maki
    Ishihara, Satomi
    Ueda, Tomoya
    Kawakami, Rika
    Saito, Yoshihiko
    Minamino, Tohru
    JOURNAL OF CARDIOLOGY, 2023, 81 (06) : 531 - 536
  • [26] Establishment and validation of a polygene prognostic model for clear cell renal cell carcinoma
    Gan, Kai
    Zhang, Keying
    Li, Yu
    Zhao, Xiaolong
    Li, Hongji
    Xu, Chao
    Liu, Shaojie
    Zhang, Chao
    Han, Donghui
    Wen, Weihong
    Qin, Weijun
    FRONTIERS IN GENETICS, 2022, 13
  • [27] Interpretable machine learning-based clinical prediction model for predicting lymph node metastasis in patients with intrahepatic cholangiocarcinoma
    Xie, Hui
    Hong, Tao
    Liu, Wencai
    Jia, Xiaodong
    Wang, Le
    Zhang, Huan
    Xu, Chan
    Zhang, Xiaoke
    Li, Wen-Le
    Wang, Quan
    Yin, Chengliang
    Lv, Xu
    BMC GASTROENTEROLOGY, 2024, 24 (01)
  • [28] Development and validation of an ensemble machine-learning model for predicting early mortality among patients with bone metastases of hepatocellular carcinoma
    Long, Ze
    Yi, Min
    Qin, Yong
    Ye, Qianwen
    Che, Xiaotong
    Wang, Shengjie
    Lei, Mingxing
    FRONTIERS IN ONCOLOGY, 2023, 13
  • [29] Establishment and Validation of a Prognostic Risk Model for Autophagy-Related Genes in Clear Cell Renal Cell Carcinoma
    Han, Wenkai
    Xu, Xiaoyan
    Che, Kai
    Ma, Guofeng
    Li, Danxia
    Zhang, Mingxin
    Jiao, Wei
    Niu, Haitao
    DISEASE MARKERS, 2020, 2020
  • [30] A machine learning-based model for predicting distant metastasis in patients with rectal cancer
    Qiu, Binxu
    Shen, Zixiong
    Wu, Song
    Qin, Xinxin
    Yang, Dongliang
    Wang, Quan
    FRONTIERS IN ONCOLOGY, 2023, 13