A TEST FOR STATIONARITY OF SPATIO-TEMPORAL RANDOM FIELDS ON PLANAR AND SPHERICAL DOMAINS

被引:25
|
作者
Jun, Mikyoung [1 ]
Genton, Marc G. [1 ]
机构
[1] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
关键词
Asymptotic normality; axial symmetry; climate model output; increasing domain asymptotics; inference; pacific wind data; stationarity; CROSS-COVARIANCE FUNCTIONS; MULTIVARIATE RANDOM-FIELDS; SPACE; SEPARABILITY; MODELS;
D O I
10.5705/ss.2010.251
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A formal test for weak stationarity of spatial and spatio-temporal random fields is proposed. We consider the cases where the spatial domain is planar or spherical, and we do not require distributional assumptions for the random fields. The method can be applied to univariate or to multivariate random fields. Our test is based on the asymptotic normality of certain statistics that are functions of estimators of covariances at certain spatial and temporal lags under weak stationarity. Simulation results for spatial as well as spatio-temporal cases on the two types of spatial domains are reported. We describe the results of testing the stationarity of Pacific wind data, and of testing the axial symmetry of climate model errors for surface temperature using the NOAA GFDL model outputs and the observations from the Climate Research Unit in East Anglia and the Hadley Centre.
引用
收藏
页码:1737 / 1764
页数:28
相关论文
共 50 条
  • [41] The spatio-temporal domains of Frizzled6 action in planar polarity control of hair follicle orientation
    Chang, Hao
    Smallwood, Philip M.
    Williams, John
    Nathans, Jeremy
    DEVELOPMENTAL BIOLOGY, 2016, 409 (01) : 181 - 193
  • [42] Nonparametric test for separability of spatio-temporal processes
    Crujeiras, Rosa M.
    Fernandez-Casal, Ruben
    Gonzalez-Manteiga, Wenceslao
    ENVIRONMETRICS, 2010, 21 (3-4) : 382 - 399
  • [43] Spatio-temporal modeling of perimetric test data
    Ibanez, M. V.
    Simo, A.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2007, 16 (06) : 497 - 522
  • [44] Test for Spatio-Temporal Counts Being Poisson
    Chen, Haiyan
    Stratton, Howard H.
    JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2008, 7 (01) : 259 - 274
  • [45] Fully automatic person segmentation in unconstrained video using spatio-temporal conditional random fields
    Bhole, Chetan
    Pal, Christopher
    IMAGE AND VISION COMPUTING, 2016, 51 : 58 - 68
  • [46] Spatio-Temporal Facial Expression Recognition Using Convolutional Neural Networks and Conditional Random Fields
    Hasani, Behzad
    Mahoor, Mohammad H.
    2017 12TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION (FG 2017), 2017, : 790 - 795
  • [47] A class of valid Matern cross-covariance functions for multivariate spatio-temporal random fields
    Ip, Ryan H. L.
    Li, W. K.
    STATISTICS & PROBABILITY LETTERS, 2017, 130 : 115 - 119
  • [48] STAR: Spatio-temporal altimeter waveform retracking using sparse representation and conditional random fields
    Roscher, Ribana
    Uebbing, Bernd
    Kusche, Juergen
    REMOTE SENSING OF ENVIRONMENT, 2017, 201 : 148 - 164
  • [49] Spatio-temporal Markov random field for video denoising
    Chen, Jia
    Tang, Chi-Keung
    2007 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-8, 2007, : 2232 - +
  • [50] Random Generation of a Locally Consistent Spatio-Temporal Graph
    Leborgne, Aurelie
    Kirandjiska, Marija
    Le Ber, Florence
    GRAPH-BASED REPRESENTATION AND REASONING (ICCS 2021), 2021, 12879 : 155 - 169