A TEST FOR STATIONARITY OF SPATIO-TEMPORAL RANDOM FIELDS ON PLANAR AND SPHERICAL DOMAINS

被引:25
|
作者
Jun, Mikyoung [1 ]
Genton, Marc G. [1 ]
机构
[1] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
关键词
Asymptotic normality; axial symmetry; climate model output; increasing domain asymptotics; inference; pacific wind data; stationarity; CROSS-COVARIANCE FUNCTIONS; MULTIVARIATE RANDOM-FIELDS; SPACE; SEPARABILITY; MODELS;
D O I
10.5705/ss.2010.251
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A formal test for weak stationarity of spatial and spatio-temporal random fields is proposed. We consider the cases where the spatial domain is planar or spherical, and we do not require distributional assumptions for the random fields. The method can be applied to univariate or to multivariate random fields. Our test is based on the asymptotic normality of certain statistics that are functions of estimators of covariances at certain spatial and temporal lags under weak stationarity. Simulation results for spatial as well as spatio-temporal cases on the two types of spatial domains are reported. We describe the results of testing the stationarity of Pacific wind data, and of testing the axial symmetry of climate model errors for surface temperature using the NOAA GFDL model outputs and the observations from the Climate Research Unit in East Anglia and the Hadley Centre.
引用
收藏
页码:1737 / 1764
页数:28
相关论文
共 50 条
  • [11] Spatio-temporal random fields: compressible representation and distributed estimation
    Nico Piatkowski
    Sangkyun Lee
    Katharina Morik
    Machine Learning, 2013, 93 : 115 - 139
  • [12] Testing the weak stationarity of a spatio-temporal point process
    Mohammad Ghorbani
    Stochastic Environmental Research and Risk Assessment, 2013, 27 : 517 - 524
  • [13] Testing the weak stationarity of a spatio-temporal point process
    Ghorbani, Mohammad
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2013, 27 (02) : 517 - 524
  • [14] Spatio-Temporal Event Detection Using Dynamic Conditional Random Fields
    Yin, Jie
    Hu, Derek Hao
    Yang, Qiang
    21ST INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-09), PROCEEDINGS, 2009, : 1321 - 1326
  • [15] Interpolation of spatial and spatio-temporal Gaussian fields using Gaussian Markov random fields
    Fontanella, L.
    Ippoliti, L.
    Martin, R. J.
    Trivisonno, S.
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2009, 3 (01) : 63 - 79
  • [16] Interpolation of spatial and spatio-temporal Gaussian fields using Gaussian Markov random fields
    Fontanella, L.
    Ippoliti, L.
    Martin, R. J.
    Trivisonno, S.
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2008, 2 (01) : 63 - 79
  • [17] Interpolation of spatial and spatio-temporal Gaussian fields using Gaussian Markov random fields
    L. Fontanella
    L. Ippoliti
    R. J. Martin
    S. Trivisonno
    Advances in Data Analysis and Classification, 2008, 2 (1)
  • [18] Segmentations of spatio-temporal images by spatio-temporal Markov random field model
    Kamijo, S
    Ikeuchi, K
    Sakauchi, M
    ENERGY MINIMIZATION METHODS IN COMPUTER VISION AND PATTERN RECOGNITION, 2001, 2134 : 298 - 313
  • [19] Statistical analysis of a spatio-temporal model with location-dependent parameters and a test for spatial stationarity
    Rao, Suhasini Subba
    JOURNAL OF TIME SERIES ANALYSIS, 2008, 29 (04) : 673 - 694
  • [20] Summarizing non-stationarity in spatio-temporal neural data
    Harris, Brendan
    Fulcher, Ben
    JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2023, 51 : S44 - S45