A TEST FOR STATIONARITY OF SPATIO-TEMPORAL RANDOM FIELDS ON PLANAR AND SPHERICAL DOMAINS

被引:25
|
作者
Jun, Mikyoung [1 ]
Genton, Marc G. [1 ]
机构
[1] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
关键词
Asymptotic normality; axial symmetry; climate model output; increasing domain asymptotics; inference; pacific wind data; stationarity; CROSS-COVARIANCE FUNCTIONS; MULTIVARIATE RANDOM-FIELDS; SPACE; SEPARABILITY; MODELS;
D O I
10.5705/ss.2010.251
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A formal test for weak stationarity of spatial and spatio-temporal random fields is proposed. We consider the cases where the spatial domain is planar or spherical, and we do not require distributional assumptions for the random fields. The method can be applied to univariate or to multivariate random fields. Our test is based on the asymptotic normality of certain statistics that are functions of estimators of covariances at certain spatial and temporal lags under weak stationarity. Simulation results for spatial as well as spatio-temporal cases on the two types of spatial domains are reported. We describe the results of testing the stationarity of Pacific wind data, and of testing the axial symmetry of climate model errors for surface temperature using the NOAA GFDL model outputs and the observations from the Climate Research Unit in East Anglia and the Hadley Centre.
引用
收藏
页码:1737 / 1764
页数:28
相关论文
共 50 条
  • [1] A SPECTRAL DOMAIN TEST FOR STATIONARITY OF SPATIO-TEMPORAL DATA
    Bandyopadhyay, Soutir
    Jentsch, Carsten
    Rao, Suhasini Subba
    JOURNAL OF TIME SERIES ANALYSIS, 2017, 38 (02) : 326 - 351
  • [2] Modelling spatio-temporal random fields
    Schmiegel, J
    Barndorff-Nielsen, OE
    Eggers, HC
    SOUTH AFRICAN JOURNAL OF SCIENCE, 2005, 101 (11-12) : 512 - 512
  • [3] Test and Visualization of Covariance Properties for Multivariate Spatio-Temporal Random Fields
    Huang, Huang
    Sun, Ying
    Genton, Marc G.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2023, 32 (04) : 1545 - 1555
  • [4] SPATIO-TEMPORAL VISUAL RECEPTIVE-FIELDS AS REVEALED BY SPATIO-TEMPORAL RANDOM NOISE
    HIDA, E
    NAKA, K
    ZEITSCHRIFT FUR NATURFORSCHUNG C-A JOURNAL OF BIOSCIENCES, 1982, 37 (10): : 1048 - 1049
  • [5] Spatio-Temporal Domains: An Overview
    Janin, David
    THEORETICAL ASPECTS OF COMPUTING - ICTAC 2018, 2018, 11187 : 231 - 251
  • [6] Predicting spatio-temporal random fields: Some computational aspects
    De Iaco, S.
    Posa, D.
    COMPUTERS & GEOSCIENCES, 2012, 41 : 12 - 24
  • [7] Spatio-temporal fMRI analysis using Markov random fields
    Descombes, X
    Kruggel, F
    von Cramon, DY
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 1998, 17 (06) : 1028 - 1039
  • [8] ON SOME MATERN COVARIANCE FUNCTIONS FOR SPATIO-TEMPORAL RANDOM FIELDS
    Ip, Ryan H. L.
    Li, W. K.
    STATISTICA SINICA, 2017, 27 (02) : 805 - 822
  • [9] Spatio-temporal random fields: compressible representation and distributed estimation
    Piatkowski, Nico
    Lee, Sangkyun
    Morik, Katharina
    MACHINE LEARNING, 2013, 93 (01) : 115 - 139
  • [10] Deep Spatio-Temporal Random Fields for Efficient Video Segmentation
    Chandra, Siddhartha
    Couprie, Camille
    Kokkinos, Iasonas
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 8915 - 8924