Independent domination in graphs: A survey and recent results

被引:173
|
作者
Goddard, Wayne [1 ,2 ]
Henning, Michael A. [3 ]
机构
[1] Clemson Univ, Sch Comp, Clemson, SC 29634 USA
[2] Clemson Univ, Dept Math Sci, Clemson, SC 29634 USA
[3] Univ Johannesburg, Dept Math, ZA-2006 Auckland Pk, South Africa
基金
新加坡国家研究基金会;
关键词
Independent dominating; WELL-COVERED GRAPHS; EQUAL DOMINATION; BIPARTITE GRAPHS; SETS; NUMBER; PARAMETERS; CONJECTURE; COMPLEXITY; BOUNDS;
D O I
10.1016/j.disc.2012.11.031
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A set S of vertices in a graph G is an independent dominating set of G if S is an independent set and every vertex not in S is adjacent to a vertex in S. In this paper, we offer a survey of selected recent results on independent domination in graphs. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:839 / 854
页数:16
相关论文
共 50 条
  • [21] Independent domination in outerplanar graphs
    Goddard, Wayne
    Henning, Michael A.
    DISCRETE APPLIED MATHEMATICS, 2023, 325 : 52 - 57
  • [22] On independent domination of regular graphs
    Cho, Eun-Kyung
    Choi, Ilkyoo
    Park, Boram
    JOURNAL OF GRAPH THEORY, 2023, 103 (01) : 159 - 170
  • [23] Independent domination bicritical graphs
    Edwards, M.
    Finbow, A.
    MacGillivray, G.
    Nasserasr, S.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2018, 72 : 446 - 471
  • [24] Independent domination in subcubic graphs
    Akbari, A.
    Akbari, S.
    Doosthosseini, A.
    Hadizadeh, Z.
    Henning, Michael A.
    Naraghi, A.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 43 (01) : 28 - 41
  • [25] Independent semitotal domination in graphs
    Padmavathi, S. V.
    Manju, J. Sabari
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2024, 45 (01): : 145 - 156
  • [26] Independent domination in directed graphs
    Cary, Michael
    Cary, Jonathan
    Prabhu, Savari
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2021, 6 (01) : 67 - 80
  • [27] INDEPENDENT TRANSVERSAL DOMINATION IN GRAPHS
    Hamid, Ismail Sahul
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2012, 32 (01) : 5 - 17
  • [28] INDEPENDENT DOMINATION IN REGULAR GRAPHS
    HAVILAND, J
    DISCRETE MATHEMATICS, 1995, 143 (1-3) : 275 - 280
  • [29] Independent domination and matchings in graphs
    Rautenbach, D
    Volkmann, L
    DISCRETE MATHEMATICS, 2002, 259 (1-3) : 325 - 330
  • [30] Independent Rainbow Domination of Graphs
    Shao, Zehui
    Li, Zepeng
    Peperko, Aljosa
    Wan, Jiafu
    Zerovnik, Janez
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (02) : 417 - 435