Independent domination in outerplanar graphs

被引:4
|
作者
Goddard, Wayne [1 ,2 ]
Henning, Michael A. [2 ]
机构
[1] Clemson Univ, Sch Math & Stat Sci, Clemson, SC 29631 USA
[2] Univ Johannesburg, Dept Math & Appl Math, Johannesburg, South Africa
关键词
Independent domination; Outerplanar graph; Art-gallery; SETS;
D O I
10.1016/j.dam.2022.10.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the maximum value of the independent domination number of outerplanar graphs. If one considers all outerplanar graphs or restricts to all maximal outerplanar graphs, this maximum is easy to find and known. So we focus on some subfamilies. Our main contribution is that, if one restricts to 2-connected outerplanar graphs of order n, then the maximum is (2n + 1)/5, and there exists an infinite family of graphs that achieve this bound whenever 2n + 1 is a multiple of 5.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:52 / 57
页数:6
相关论文
共 50 条
  • [1] Connected domination in maximal outerplanar graphs
    Zhuang, Wei
    DISCRETE APPLIED MATHEMATICS, 2020, 283 : 533 - 541
  • [2] Domination and Outer Connected Domination in Maximal Outerplanar Graphs
    Zhuang, Wei
    GRAPHS AND COMBINATORICS, 2021, 37 (06) : 2679 - 2696
  • [3] Domination and Outer Connected Domination in Maximal Outerplanar Graphs
    Wei Zhuang
    Graphs and Combinatorics, 2021, 37 : 2679 - 2696
  • [4] Semipaired domination in maximal outerplanar graphs
    Henning, Michael A.
    Kaemawichanurat, Pawaton
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2019, 38 (03) : 911 - 926
  • [5] Double domination in maximal outerplanar graphs
    Zhuang, Wei
    Zheng, Qiuju
    OPEN MATHEMATICS, 2022, 20 (01): : 1082 - 1088
  • [6] Semipaired domination in maximal outerplanar graphs
    Michael A. Henning
    Pawaton Kaemawichanurat
    Journal of Combinatorial Optimization, 2019, 38 : 911 - 926
  • [7] Total domination in maximal outerplanar graphs
    Dorfling, Michael
    Hattingh, Johannes H.
    Jonck, Elizabeth
    DISCRETE APPLIED MATHEMATICS, 2017, 217 : 506 - 511
  • [8] Domination of triangulated discs and maximal outerplanar graphs
    Renders, Jarne
    Tokunaga, Shin-ichi
    Zamfirescu, Carol T.
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 473
  • [9] Total domination in maximal outerplanar graphs II
    Dorfling, Michael
    Hattingh, Johannes H.
    Jonck, Elizabeth
    DISCRETE MATHEMATICS, 2016, 339 (03) : 1180 - 1188
  • [10] On the secure domination numbers of maximal outerplanar graphs
    Araki, Toru
    Yumoto, Issei
    DISCRETE APPLIED MATHEMATICS, 2018, 236 : 23 - 29