We introduce the notion of hypersymplectic structure on a Courant algebroid and we prove the existence of a one-to-one correspondence between hypersymplectic and hyperkahler structures. This correspondence provides a simple way to define a hyperkahler structure on a Courant algebroid. We show that hypersymplectic structures on Courant algebroids encompass hypersymplectic structures with torsion on Lie algebroids. In the latter, the torsion existing at the Lie algebroid level is incorporated in the Courant structure. Cases of hypersymplectic structures on Courant algebroids which are doubles of Lie, quasi-Lie and proto-Lie bialgebroids are investigated.
机构:
IMPA, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, BrazilIMPA, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, Brazil
Bursztyn, Henrique
Drummond, Thiago
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, Dept Matemat, Inst Matemat, Caixa Postal 68530, BR-21941909 Rio De Janeiro, RJ, BrazilIMPA, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, Brazil
Drummond, Thiago
Netto, Clarice
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Inst Matemat & Estat, Rua Matao 1010,Cidade Univ, BR-05508090 Sao Paulo, BrazilIMPA, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, Brazil