The symmetric six-vertex model and the Segre cubic threefold

被引:2
|
作者
Martins, M. J. [1 ]
机构
[1] Univ Fed Sao Carlos, Dept Fis, BR-13565905 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
integrable models; six-vertex model; Segre threefold;
D O I
10.1088/1751-8113/48/33/334002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we investigate the mathematical properties of the integrability of the symmetric six-vertex model towards the view of algebraic geometry. We show that the algebraic variety originated from Baxter's commuting transfer method is birationally isomorphic to a ubiquitous threefold known as Segre cubic primal. This relation makes it possible to present the most generic solution for the Yang-Baxter triple associated to this lattice model. The respective R-matrix and Lax operators are parameterized by three independent affine spectral variables.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] SIX-VERTEX MODEL AND RANDOM MATRIX DISTRIBUTIONS
    Gorin, Vadim
    Nicoletti, Matthew
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2025, 62 (02) : 175 - 234
  • [32] Integrable equations for the partition function of the six-vertex model
    Izergin A.G.
    Karjalainen E.
    Kitanin N.A.
    Journal of Mathematical Sciences, 2000, 100 (2) : 2141 - 2146
  • [33] The six-vertex model on random planar maps revisited
    Price, Andrew Elvey
    Zinn-Justin, Paul
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2023, 196
  • [34] On the Yang-Baxter equation for the six-vertex model
    Mangazeev, Vladimir V.
    NUCLEAR PHYSICS B, 2014, 882 : 70 - 96
  • [35] An Ising-type formulation of the six-vertex model
    Bazhanov, Vladimir V.
    Sergeev, Sergey M.
    arXiv, 2022,
  • [36] The six-vertex model and deformations of the Weyl character formula
    Brubaker, Ben
    Schultz, Andrew
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2015, 42 (04) : 917 - 958
  • [37] On the correlation functions of the domain wall six-vertex model
    Foda, O
    Preston, I
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
  • [38] Integral Formulas and Antisymmetrization Relations for the Six-Vertex Model
    Luigi Cantini
    Filippo Colomo
    Andrei G. Pronko
    Annales Henri Poincaré, 2020, 21 : 865 - 884
  • [39] Exact solution of the six-vertex model on a random lattice
    Kostov, IK
    NUCLEAR PHYSICS B, 2000, 575 (03) : 513 - 534
  • [40] PHASE TRANSITIONS IN THE ASEP AND STOCHASTIC SIX-VERTEX MODEL
    Aggarwal, Amol
    Borodin, Alexei
    ANNALS OF PROBABILITY, 2019, 47 (02): : 613 - 689