The symmetric six-vertex model and the Segre cubic threefold

被引:2
|
作者
Martins, M. J. [1 ]
机构
[1] Univ Fed Sao Carlos, Dept Fis, BR-13565905 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
integrable models; six-vertex model; Segre threefold;
D O I
10.1088/1751-8113/48/33/334002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we investigate the mathematical properties of the integrability of the symmetric six-vertex model towards the view of algebraic geometry. We show that the algebraic variety originated from Baxter's commuting transfer method is birationally isomorphic to a ubiquitous threefold known as Segre cubic primal. This relation makes it possible to present the most generic solution for the Yang-Baxter triple associated to this lattice model. The respective R-matrix and Lax operators are parameterized by three independent affine spectral variables.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] On the Six-Vertex Model’s Free Energy
    Hugo Duminil-Copin
    Karol Kajetan Kozlowski
    Dmitry Krachun
    Ioan Manolescu
    Tatiana Tikhonovskaia
    Communications in Mathematical Physics, 2022, 395 : 1383 - 1430
  • [22] The matrix product ansatz for the six-vertex model
    Lazo, Matheus J.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 374 (02) : 655 - 662
  • [23] Six-vertex model with rotated boundary conditions
    Fujimoto, M
    JOURNAL OF STATISTICAL PHYSICS, 1996, 82 (5-6) : 1519 - 1539
  • [24] Exact solution of the ''colour'' six-vertex model
    Bariev, RZ
    Klumper, A
    Zittartz, J
    PHYSICS LETTERS A, 1997, 227 (5-6) : 401 - 404
  • [25] Delocalization of the height function of the six-vertex model
    Duminil-Copin, Hugo
    Karrila, Alex M.
    Manolescu, Ioan
    Oulamara, Mendes
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2024, 26 (11) : 4131 - 4190
  • [26] Fluctuations near the Boundaries in the Six-Vertex Model
    N. M. Bogolyubov
    M. B. Zvonarev
    A. V. Kitaev
    Journal of Mathematical Sciences, 2003, 115 (1) : 1960 - 1963
  • [27] Boundary correlation functions of the six-vertex model
    Bogoliubov, NM
    Pronko, AG
    Zvonarev, MB
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (27): : 5525 - 5541
  • [30] Stationary measure for six-vertex model on a strip*
    Yang, Zongrui
    ELECTRONIC JOURNAL OF PROBABILITY, 2024, 29