On rigidity and scalar curvature of Einstein-type manifolds

被引:2
|
作者
Mirshafeazadeh, Mir Ahmad [1 ]
Bidabad, Behroz [2 ]
机构
[1] Payame Noor Univ, Dept Math, POB 19395-3697, Tehran, Iran
[2] Amirkabir Univ Technol, Fac Math & Comp Sci, 424 Hafez Ave, Tehran 15914, Iran
关键词
Einstein-type manifold; Yamabe quasi-soliton; Yamabe soliton; Einstein manifold; scalar curvature; GRADIENT; SOLITONS;
D O I
10.1142/S0219887818500731
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Here, the scalar curvature of an Einstein-type manifold or equivalently an almost Yamabe quasi-soliton is explicitly determined in terms of its soliton function and some rigidity theorems are obtained. Among the others its shown; if the soliton function is negative, then every compact conformal Yamabe quasi-soliton is isometric to the standard Euclidean sphere.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Einstein-Type Elliptic Systems
    Rodrigo Avalos
    Jorge H. Lira
    Annales Henri Poincaré, 2022, 23 : 3221 - 3264
  • [42] A note on rigidity of Einstein four-manifolds with positive sectional curvature
    Cui, Qing
    Sun, Linlin
    MANUSCRIPTA MATHEMATICA, 2021, 165 (1-2) : 269 - 282
  • [43] On the geometry of Einstein-type structures
    Anselli, Andrea
    Colombo, Giulio
    Rigoli, Marco
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 204
  • [44] A note on rigidity of Einstein four-manifolds with positive sectional curvature
    Qing Cui
    Linlin Sun
    manuscripta mathematica, 2021, 165 : 269 - 282
  • [45] STRESS-ENERGY TENSOR OF THE TRACELESS RICCI TENSOR AND EINSTEIN-TYPE MANIFOLDS
    Yun, Gabjin
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2024, 61 (02) : 255 - 277
  • [46] Scalar curvature rigidity of almost Hermitian manifolds which are asymptotic to CHm
    Listing, Mario
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2006, 24 (04) : 367 - 382
  • [47] Einstein-Type Elliptic Systems
    Avalos, Rodrigo
    Lira, Jorge H.
    ANNALES HENRI POINCARE, 2022, 23 (09): : 3221 - 3264
  • [48] On generalized m-quasi-Einstein manifolds with constant scalar curvature
    Hu, Zejun
    Li, Dehe
    Xu, Jing
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 432 (02) : 733 - 743
  • [49] Rigidity of Einstein metrics as critical points of quadratic curvature functionals on closed manifolds
    Ma, Bingqing
    Huang, Guangyue
    Li, Xingxiao
    Chen, Yu
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 175 : 237 - 248
  • [50] Local rigidity of Einstein 4-manifolds satisfying a chiral curvature condition
    Joel Fine
    Kirill Krasnov
    Michael Singer
    Mathematische Annalen, 2021, 379 : 569 - 588