Scalar curvature rigidity of almost Hermitian manifolds which are asymptotic to CHm

被引:1
|
作者
Listing, Mario [1 ]
机构
[1] Univ Dortmund, Fachbereich Math, Lehrstuhl 7, D-44221 Dortmund, Germany
关键词
almost complex structures; rigidity; Kahler killing spinors;
D O I
10.1016/j.difgeo.2005.12.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that an almost Hermitian manifold (M, g) of real dimension 2m which is strongly asymptotically complex hyperbolic and satisfies a certain scalar curvature bound must be isometric to the complex hyperbolic space CHm. Assuming Kahler instead of almost Hermitian this gives the already known rigidity results proved for the odd complex dimensional case by M. Herzlich in [M. Herzlich, Scalar curvature and rigidity of odd-dimensional complex hyperbolic spaces, Math. Ann. 312 (4) (1998) 641-657] as well as for the even complex dimensional case by H. Boualem and M. Herzlich in [H. Boualem, M. Herzlich, Rigidity at infinity for even-dimensional asymptotically complex hyperbolic spaces, Ann. Scuola Norm. Sup Pisa (Ser. V) 1 (2) (2002) 461-469]. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:367 / 382
页数:16
相关论文
共 50 条