DUALITY PRINCIPLE AND SPECIAL OSSERMAN MANIFOLDS

被引:2
|
作者
Andrejic, Vladica [1 ]
机构
[1] Univ Belgrade, Fac Math, Belgrade, Serbia
来源
PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD | 2013年 / 94卷 / 108期
关键词
duality principle; special Osserman manifold; PSEUDO-RIEMANNIAN MANIFOLDS; CURVATURE;
D O I
10.2298/PIM1308197A
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the connection between the duality principle and the Osserman condition in a pseudo-Riemannian setting. We prove that a connected pointwise two-leaves Osserman manifold of dimension n >= 5 is globally Osserman and investigate the relation between the special Osserman condition and the two-leaves Osserman one.
引用
收藏
页码:197 / 204
页数:8
相关论文
共 50 条
  • [41] Convex functions on Grassmannian manifolds and Lawson-Osserman problem
    Xin, Y. L.
    Yang, Ling
    ADVANCES IN MATHEMATICS, 2008, 219 (04) : 1298 - 1326
  • [42] DUALITY FOR GRADED MANIFOLDS
    Grabowski, Janusz
    Jozwikowski, Michal
    Rotkiewicz, Mikolaj
    REPORTS ON MATHEMATICAL PHYSICS, 2017, 80 (01) : 115 - 142
  • [43] DUALITY FOR MANIFOLDS WITH BOUNDARY
    LVOV, SP
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1975, (04): : 14 - 18
  • [44] Curvature properties of φ-null Osserman Lorentzian S-manifolds
    Brunetti, Letizia
    Caldarella, Angelo V.
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2014, 12 (01): : 97 - 113
  • [45] Higher-order Jordan Osserman pseudo-Riemannian manifolds
    Gilkey, PB
    Ivanova, R
    Zhang, T
    CLASSICAL AND QUANTUM GRAVITY, 2002, 19 (17) : 4543 - 4551
  • [46] Topological symmetry of forms, N=1 supersymmetry and S-duality on special manifolds
    Baulieu, Laurent
    Tanzini, Alessandro
    JOURNAL OF GEOMETRY AND PHYSICS, 2006, 56 (11) : 2379 - 2401
  • [47] Principle of Duality on Prognostics
    Samie, Mohammad
    Alghassi, Alireza
    Motlagh, Amir M. S.
    Perinpanayagam, Suresh
    Kapetanios, Epaminondas
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2014, 5 (06) : 43 - 52
  • [48] ON MARKUSHEVICHS DUALITY PRINCIPLE
    GORGULA, VI
    DOKLADY AKADEMII NAUK SSSR, 1962, 143 (02): : 269 - &
  • [49] The quantum duality principle
    Gavarini, F
    ANNALES DE L INSTITUT FOURIER, 2002, 52 (03) : 809 - +
  • [50] A duality principle for groups
    Dutkay, Dorin
    Han, Deguang
    Larson, David
    JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (04) : 1133 - 1143