DUALITY PRINCIPLE AND SPECIAL OSSERMAN MANIFOLDS

被引:2
|
作者
Andrejic, Vladica [1 ]
机构
[1] Univ Belgrade, Fac Math, Belgrade, Serbia
来源
关键词
duality principle; special Osserman manifold; PSEUDO-RIEMANNIAN MANIFOLDS; CURVATURE;
D O I
10.2298/PIM1308197A
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the connection between the duality principle and the Osserman condition in a pseudo-Riemannian setting. We prove that a connected pointwise two-leaves Osserman manifold of dimension n >= 5 is globally Osserman and investigate the relation between the special Osserman condition and the two-leaves Osserman one.
引用
收藏
页码:197 / 204
页数:8
相关论文
共 50 条
  • [21] Osserman manifolds and Clifford structures
    Nikolayevsky, Y
    HOUSTON JOURNAL OF MATHEMATICS, 2003, 29 (01): : 59 - 75
  • [22] Two theorems on Osserman manifolds
    Nikolayevsky, Y
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2003, 18 (03) : 239 - 253
  • [23] Duality in a special class of submanifolds and Frobenius manifolds
    Mokhov, O. I.
    RUSSIAN MATHEMATICAL SURVEYS, 2008, 63 (02) : 378 - 380
  • [24] Almost hermitian manifolds and Osserman condition
    N. Blažić
    M. Prvanović
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2001, 71 : 35 - 47
  • [25] Compact Osserman Manifolds with Neutral Metric
    M. Brozos-Vázquez
    E. García-Río
    P. Gilkey
    R. Vázquez-Lorenzo
    Results in Mathematics, 2011, 59 : 495 - 506
  • [26] Almost Hermitian manifolds and Osserman condition
    Blazic, N
    Prvanovic, M
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2001, 71 (1): : 35 - 47
  • [27] Compact Osserman Manifolds with Neutral Metric
    Brozos-Vazquez, M.
    Garcia-Rio, E.
    Gilkey, P.
    Vazquez-Lorenzo, R.
    RESULTS IN MATHEMATICS, 2011, 59 (3-4) : 495 - 506
  • [28] Four dimensional Osserman Lorentzian manifolds
    GarciaRio, E
    Kupeli, DN
    NEW DEVELOPMENTS IN DIFFERENTIAL GEOMETRY, 1996, 350 : 201 - 211
  • [29] Nonsymmetric Osserman indefinite Kahler manifolds
    Bonome, A
    Castro, R
    Garcia-Rio, E
    Hervella, L
    Vazquez-Lorenzo, R
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (09) : 2763 - 2769
  • [30] Complex Osserman Kahler manifolds in dimension four
    Brozos-Vazquez, Miguel
    Gilkey, Peter
    FORUM MATHEMATICUM, 2013, 25 (02) : 313 - 336