Criterion-Robust Experimental Designs for the Quadratic Regression on a Square and a Cube

被引:2
|
作者
Filova, Lenka [1 ]
Harman, Radoslav [1 ]
机构
[1] Comenius Univ, Dept Appl Math & Stat, Bratislava, Slovakia
关键词
E; INF; k; optimality; Maximin efficiency; Optimal design; Quadratic regression; 62K05; MULTIVARIATE POLYNOMIAL REGRESSION; EFFICIENT DESIGNS; DISCRIMINATION;
D O I
10.1080/03610926.2011.602491
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider the quadratic regression model on the q-dimensional cube [1, 1](q). The purpose of this article is to exhibit designs for the quadratic regression that are criterion robust in the sense of maximin efficiency within the class of all orthogonally invariant information functions. For the case of the standard quadratic regression on an interval (q=1), the asymptotic maximin efficient design is already known. In this article, we give the asymptotic maximin efficient design analytically for q=2, and numerically for q=3. Moreover, for both q=2 and q=3, we compute the measures of criterion-robustness of the D-, E-, and A-optimal designs, and propose criterion robust exact designs of sizes up to 44. Our results suggest that the A-optimal design is particularly efficiency-robust under all orthogonally invariant information functions.
引用
收藏
页码:2044 / 2055
页数:12
相关论文
共 50 条
  • [31] MATRIX CRITERION ROBUST LINEAR QUADRATIC CONTROL PROBLEM
    MAKILA, PM
    TOIVONEN, HT
    INTERNATIONAL JOURNAL OF CONTROL, 1987, 46 (03) : 913 - 931
  • [32] Robust estimation for functional quadratic regression models
    Boente G.
    Parada D.
    Computational Statistics and Data Analysis, 2023, 187
  • [33] ROBUST CRITERION FOR VARIABLE SELECTION IN LINEAR REGRESSION
    Patil, A. B.
    Kashid, D. N.
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2009, 5 (02): : 509 - 521
  • [34] ROBUST DESIGNS FOR NEARLY LINEAR-REGRESSION
    LI, KC
    NOTZ, W
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1982, 6 (02) : 135 - 151
  • [35] Minimax robust designs for misspecified regression models
    Shi, PL
    Ye, JJ
    Zhou, J
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2003, 31 (04): : 397 - 414
  • [36] Robust regression designs for approximate polynomial models
    Fang, ZD
    Wiens, DP
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2003, 117 (02) : 305 - 321
  • [37] Optimal and robust designs for trigonometric regression models
    Xiaojian Xu
    Xiaoli Shang
    Metrika, 2014, 77 : 753 - 769
  • [38] Model-Robust Designs for Quantile Regression
    Kong, Linglong
    Wiens, Douglas P.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2015, 110 (509) : 233 - 245
  • [39] Optimal and robust designs for trigonometric regression models
    Xu, Xiaojian
    Shang, Xiaoli
    METRIKA, 2014, 77 (06) : 753 - 769
  • [40] Robust designs for wavelet approximations of regression models
    Oyet, AJ
    Wiens, DP
    JOURNAL OF NONPARAMETRIC STATISTICS, 2000, 12 (06) : 837 - 859